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We used the Monte Carlo transport code Los Alamos High-Energy Transport (LAHET) to study the shielding 
effectiveness of common Shielding materials for high-energy neutrons. The source neutron spectrum was fkom 
the interaction of an 800-MeV proton beam and iron target. In a normal incident, the neutrons collided with 
walls made of six common shielding materials: water, concrete, iron, lead, polyethylene, and soil. The walls 
were of four different thicknesses: 25,50,75 and 100 cm. We then tallied the neutron spectra on the other side 
of the shielding wall and calculated the neutron doses. For the high-Z materials-iron and lead-we find that 
many neutrons with energies between 1-10 MeV are created when high-energy neutrons interact with shielding 
materials. For materials containing low-Z elements-water, soil, concrete, and polyethylens-the spectra show 
higher energy peaks at about 100 MeV. Our studies show that for a given wall thickness, concrete is more 
effective than the other materials. We also studied the effectiveness of combinations of materials, such as 
concrete and water, concrete and soil, iron and polyethylene, or iron polyethylene and concrete. 

Introduction 

Neutron shielding for high-energy accelerators is an important issue in health physics for, in general, massive 
shielding is required to reduce neutron dose.The purpose of this simple study is to find out the relative 
effectiveness of common shielding materials by using Monte Carlo simulations. If we know the shielding 
effectiveness of materials, we will be able to properly design neutron sheilding. While we know atoms of 
materials containing low-Z elements will transfer most of the neutron energy during a collision process, high- 
energy nuclear reactions may have different characteristics. 

Monte Carlo simulations 
1 

For our simulations, we used the Los Alamos High-Energy Transport code (LAHET) . The neutron source 
simulates the interaction of an 800-MeV proton beam with an iron target. Figure 1 shows the spectrum that 
results. 
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Fig. 1. Neutron spectrum 800-MeV proton on 
iron target 

In a normal incident, the neutron collides with a wall. For the wall, we used water, concrete, iron, lead, 
polyethylene, and soil, each at four different thicknesses: 25,50,75 and 100 cm. We then tallied the neutron 
spectra on other side of the wall and calculated the neutron doses. In LAHET calculations, when the energyzof a 
neutron reaches 20 MeV, the code records all information on a tape. We used the tape as input for a MCNP 
calculation, which provides more detailed neutron interaction cross sections. 

Results and discussion 

In figures 2-7, we show the neutron spectra for six materials and four wall thickness. 
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Fig. 2. Neutron spectra CH, slab 
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Fig. 4. Neutron spectra soil slab 
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Fig. 3. Neutron spectra water slab 
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Fig. 5. Neutron spectra concrete slab 
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Fig. 6. Neutron spectra iron slab 
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Fig. 7. Neutron spectra lead slab 

For water and polyethylene, the spectra maintain a single peak at about 100 MeV. For soil and concrete, two 
extra peaks between 5 and 8 MeV derive from silicon (both contain about 30% by weight). For iron and lead, 
the discontinuity at 20 MeV is not real but comes from the differences in cross sections when we link LAHET 
to MCNP. However, the neutron peaks at about 1 MeV are real, the result of (n, xn) reactions. We then fold the 
resulting spectra to the neutron fluence-to-dose function, calculating neutron doses on the other side of the walls. 
Table 1 is a summary of our results, which show that materials consisting of low-Z elements are more 
effectively to reduce neutron doses. The material density is also an important factor; the calculation for water and 
for concrete with a density of 1 gm/cm3 shows almost identical results in neutron spectrum and neutron dose. 

Table 1. Neutron doses with different walls 

Combinations of materials 

We considered the following combinations of two or three materials: 
(1) 50-cm iron + 50-cm CH,, 
(2) 25-cm iron + 75-cm CH,, 
(3) 25-cm iron + 50-cm CH, + 25-cm concrete, 
(4) 25-cm iron + 25-cm CH2 + 50-cm concrete, 
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' (5) 25-cm concrete + 50-cm water + 25-cm concrete, 
(6) 25-cm concrete + 25-cm water + 50-cm concrete, 
(7) 25-cm concrete + 50-cm soil + 25-cm concrete, 
(8) 25-cm concrete + 25-cm soil + 50-cm concrete. 

CASE 

Figures 8 and 9 show neutron spectra. Table 2 summarizes dose results. 
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Fig. 8. Neutron spectra combination slab Fig. 9. Neutron spectra combination slab 

I 3 I 8.16e-2 I 
5 I 5.71e-2 
6 4.76e-2 
7 I 4.8%-2 
8 4.33e-2 

They confirm further that 
higher Z elements, such as iron, are not as effective as the concrete shown in cases 1-4 or as compared with 

cases 5-8; and 
higher density materials are more effective, as shown in cases 3 and 4, than the concrete compared with CH2 

in cases 1 and 2; and also more effective, as shown in cases 7 and 8, than the soil as compared with water in 
cases 5 and 6. 
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Conclusion 

For high-energy neutron shielding, we should use high-density materials that consist of low-Z elements. 
Concrete is a good choice; in some cases, an acceptable choice is in replacing part of the concrete with soil. 
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