62 research outputs found

    The role of low levels of juvenile hormone esterase in the metamorphosis of Manduca sexta

    Get PDF
    The activity of juvenile hormone esterase (JHE) in feeding fifth instar larvae of Manduca sexta increases gradually with larval weight and rises to a peak after larvae pass the critical weight when juvenile hormone secretion ceases. Starvation of larvae of Manduca sexta (L.) that had exceeded the critical weight inhibited peak levels of JHE, but did not delay entry into the wandering stage when larvae leave the plant in search of a pupation site. This suggests that peak levels of JHE may not be essential for the normal timing of metamorphosis. Starved larvae pupated normally, indicating the peak of JHE was not necessary for a morphologically normal pupation. Treatments of larvae with the selective JHE inhibitor O-ethyl-S-phenyl phosphoramidothiolate (EPPAT) that began immediately after larvae achieved the critical weight (6.0 to 6.5 grams for our strain of Manduca) delayed entry into the wandering stage. By contrast, EPPAT treatment of larvae at weights above 8.0g had no effect on the subsequent timing of the onset of wandering. Therefore, although the normal timing of the onset of wandering does not require peak levels of JHE, it requires low to moderate levels of JHE to be present until larvae reach a weight of about 8.0g

    Nuclear receptors of the honey bee: annotation and expression in the adult brain

    Get PDF
    The Drosophila genome encodes 18 canonical nuclear receptors. All of the Drosophila nuclear receptors are here shown to be present in the genome of the honey bee (Apis mellifera). Given that the time since divergence of the Drosophila and Apis lineages is measured in hundreds of millions of years, the identification of matched orthologous nuclear receptors in the two genomes reveals the fundamental set of nuclear receptors required to ‘make’ an endopterygote insect. The single novelty is the presence in the A. mellifera genome of a third insect gene similar to vertebrate photoreceptor-specific nuclear receptor (PNR). Phylogenetic analysis indicates that this novel gene, which we have named AmPNR-like, is a new member of the NR2 subfamily not found in the Drosophila or human genomes. This gene is expressed in the developing compound eye of the honey bee. Like their vertebrate counterparts, arthropod nuclear receptors play key roles in embryonic and postembryonic development. Studies in Drosophila have focused primarily on the role of these transcription factors in embryogenesis and metamorphosis. Examination of an expressed sequence tag library developed from the adult bee brain and analysis of transcript expression in brain using in situ hybridization and quantitative RT-PCR revealed that several members of the nuclear receptor family (AmSVP, AmUSP, AmERR, AmHr46, AmFtz-F1, and AmHnf-4) are expressed in the brain of the adult bee. Further analysis of the expression of AmUSP and AmSVP in the mushroom bodies, the major insect brain centre for learning and memory, revealed changes in transcript abundance and, in the case of AmUSP, changes in transcript localization, during the development of foraging behaviour in the adult. Study of the honey bee therefore provides a model for understanding nuclear receptor function in the adult brain

    Developmental model of static allometry in holometabolous insects

    No full text
    The regulation of static allometry is a fundamental developmental process, yet little is understood of the mechanisms that ensure organs scale correctly across a range of body sizes. Recent studies have revealed the physiological and genetic mechanisms that control nutritional variation in the final body and organ size in holometabolous insects. The implications these mechanisms have for the regulation of static allometry is, however, unknown. Here, we formulate a mathematical description of the nutritional control of body and organ size in Drosophila melanogaster and use it to explore how the developmental regulators of size influence static allometry. The model suggests that the slope of nutritional static allometries, the ‘allometric coefficient’, is controlled by the relative sensitivity of an organ's growth rate to changes in nutrition, and the relative duration of development when nutrition affects an organ's final size. The model also predicts that, in order to maintain correct scaling, sensitivity to changes in nutrition varies among organs, and within organs through time. We present experimental data that support these predictions. By revealing how specific physiological and genetic regulators of size influence allometry, the model serves to identify developmental processes upon which evolution may act to alter scaling relationships
    corecore