539 research outputs found

    Isospin Fluctuations from a Thermally Equilibrated Hadron Gas

    Full text link
    Partition functions, multiplicity distributions, and isospin fluctuations are calculated for canonical ensembles in which additive quantum numbers as well as total isospin are strictly conserved. When properly accounting for Bose-Einstein symmetrization, the multiplicity distributions of neutral pions in a pion gas are significantly broader as compared to the non-degenerate case. Inclusion of resonances compensates for this broadening effect. Recursion relations are derived which allow calculation of exact results with modest computer time.Comment: 10 pages, 5 figure

    Binary data corruption due to a Brownian agent

    Full text link
    We introduce a model of binary data corruption induced by a Brownian agent (active random walker) on a d-dimensional lattice. A continuum formulation allows the exact calculation of several quantities related to the density of corrupted bits \rho; for example the mean of \rho, and the density-density correlation function. Excellent agreement is found with the results from numerical simulations. We also calculate the probability distribution of \rho in d=1, which is found to be log-normal, indicating that the system is governed by extreme fluctuations.Comment: 39 pages, 10 figures, RevTe

    Atom capture by nanotube and scaling anomaly

    Full text link
    The existence of bound state of the polarizable neutral atom in the inverse square potential created by the electric field of single walled charged carbon nanotube (SWNT) is shown to be theoretically possible. The consideration of inequivalent boundary conditions due to self-adjoint extensions lead to this nontrivial bound state solution. It is also shown that the scaling anomaly is responsible for the existence of bound state. Binding of the polarizable atoms in the coupling constant interval \eta^2\in[0,1) may be responsible for the smearing of the edge of steps in quantized conductance, which has not been considered so far in literature.Comment: Accepted in Int.J.Theor.Phy

    Additional phases induced by the supersymmetric CP phases

    Full text link
    The explicit CP violation in the MSSM radiatively induces a finite unremovable alignment between the Higgs doublets. This additinal phase can be as large as the original CP phases in certain portions of the MSSM parameter space. Considering the specific case of the charginos, this additional phase is shown to induce a conceivable amount of CP violation near the would--be CP conserving points. Moreover, the CP violation in the absence of this phase is smaller than the one in the presence of it, and the former can never compete with the latter, however large tanβ\tan\beta is.Comment: 29 pp, 15 fig

    Effects of the supersymmetric phases on the neutral Higgs sector

    Get PDF
    By using the effective potential approximation and taking into account the dominant top quark and scalar top quark loops, radiative corrections to MSSM Higgs potential are computed in the presence of the supersymmetric CP-violating phases. It is found that, the lightest Higgs scalar remains essentially CP-even as in the CP-invariant theory whereas the other two scalars are heavy and do not have definite CP properties. The supersymmetric CP-violating phases are shown to modify significantly the decay rates of the scalars to fermion pairs.Comment: 24 pp, 8 figs, 2 tables, typos and errors correcte

    A Detailed Study of the Gluino Decay into the Third Generation Squarks at the CERN LHC

    Full text link
    In supersymmetric models a gluino can decay into tb\tilde{\chi}^{\pm}_1 through a stop or a sbottom. The decay chain produces an edge structure in the m_{tb} distribution. Monte Carlo simulation studies show that the end point and the edge height would be measured at the CERN LHC by using a sideband subtraction technique. The stop and sbottom masses as well as their decay branching ratios are constrained by the measurement. We study interpretations of the measurement in the minimal supergravity model. We also study the gluino decay into tb and \tilde{\chi}^{\pm}_2 as well as the influence of the stop left-right mixing on the m_{bb} distribution of the tagged tbtb events.Comment: revtex, 20 pages in PRD format, 35 eps file

    On the Spontaneous CP Breaking at Finite Temperature in a Nonminimal Supersymmetric Standard Model

    Full text link
    We study the spontaneous CP breaking at finite temperature in the Higgs sector in the Minimal Supersymmetric Standard Model with a gauge singlet. We consider the contribution of the standard model particles and that of stops, charginos, neutralinos, charged and neutral Higgs boson to the one-loop effective potential. Plasma effects for all bosons are also included. Assuming CP conservation at zero temperature, so that experimental constraints coming from, {\it e.g.}, the electric dipole moment of the neutron are avoided, and the electroweak phase transition to be of the first order and proceeding via bubble nucleation, we show that spontaneous CP breaking cannot occur inside the bubble mainly due to large effects coming from the Higgs sector. However, spontaneous CP breaking can be present in the region of interest for the generation of the baryon asymmetry, namely inside the bubble wall. The important presence of very tiny explicit CP violating phases is also commented.Comment: 28 pages, 4 figures available upon request, DFPD 94/TH/38 and SISSA 94/81-A preprint

    Dark Matter, Light Stops and Electroweak Baryogenesis

    Full text link
    We examine the neutralino relic density in the presence of a light top squark, such as the one required for the realization of the electroweak baryogenesis mechanism, within the minimal supersymmetric standard model. We show that there are three clearly distinguishable regions of parameter space, where the relic density is consistent with WMAP and other cosmological data. These regions are characterized by annihilation cross sections mediated by either light Higgs bosons, Z bosons, or by the co-annihilation with the lightest stop. Tevatron collider experiments can test the presence of the light stop in most of the parameter space. In the co-annihilation region, however, the mass difference between the light stop and the lightest neutralino varies between 15 and 30 GeV, presenting an interesting challenge for stop searches at hadron colliders. We present the prospects for direct detection of dark matter, which provides a complementary way of testing this scenario. We also derive the required structure of the high energy soft supersymmetry breaking mass parameters where the neutralino is a dark matter candidate and the stop spectrum is consistent with electroweak baryogenesis and the present bounds on the lightest Higgs mass.Comment: 24 pages, 8 figures; version published in Phys.Rev.

    Counting children with tuberculosis: why numbers matter.

    Get PDF
    In the last 5 years, childhood tuberculosis (TB) has received increasing attention from international organisations, national TB programmes and academics. For the first time, a number of different groups are developing techniques to estimate the burden of childhood TB. We review the challenges in diagnosing TB in children and the reasons why cases in children can go unreported. We discuss the importance of an accurate understanding of burden for identifying problems in programme delivery, targeting interventions, monitoring trends, setting targets, allocating resources appropriately and providing strong advocacy. We briefly review the estimates produced by new analytical methods, and outline the reasons for recent improvements in our understanding and potential future directions. We conclude that while innovation, collaboration and better data have improved our understanding of the childhood TB burden, it remains substantially incomplete
    corecore