7 research outputs found
Virtual Try-On With Generative Adversarial Networks: A Taxonomical Survey
This chapter elaborates on using generative adversarial networks (GAN) for virtual try-on applications. It presents the first comprehensive survey on this topic. Virtual try-on represents a practical application of GANs and pixel translation, which improves on the techniques of virtual try-on prior to these new discoveries. This survey details the importance of virtual try-on systems and the history of virtual try-on; shows how GANs, pixel translation, and perceptual losses have influenced the field; and summarizes the latest research in creating virtual try-on systems. Additionally, the authors present the future directions of research to improve virtual try-on systems by making them usable, faster, more effective. By walking through the steps of virtual try-on from start to finish, the chapter aims to expose readers to key concepts shared by many GAN applications and to give readers a solid foundation to pursue further topics in GANs