12 research outputs found

    On the inertia of heat

    Full text link
    Does heat have inertia? This question is at the core of a long-standing controversy on Eckart's dissipative relativistic hydrodynamics. Here I show that the troublesome inertial term in Eckart's heat flux arises only if one insists on defining thermal diffusivity as a spacetime constant. I argue that this is the most natural definition, and that all confusion disappears if one considers instead the space-dependent comoving diffusivity, in line with the fact that, in the presence of gravity, space is an inhomogeneous medium.Comment: 3 page

    Review of experimental data and modeling of the viscosities of fully liquid slags in the Al2O3-CaO-'FeO'-SiO2 system

    No full text
    A general model based on the Urbain formalism has been developed, which enables the viscosities of liquid slags to be predicted for all compositions in the Al2O3-CaO-'FeO'-SiO2 system in equilibrium with metallic iron. Available experimental viscosity data have been analyzed and critically reviewed. The Urbain formalism has been modified to include compositional dependent model parameters. Experimental data in unaries, binaries, ternaries, and the quaternary system have been described by the model over the whole compositional and temperature ranges using one set of model parameters. This viscosity model can now be applied to various industrial slag systems

    A quasi-chemical viscosity model for fully liquid slags in the Al2O3-CaO-'FeO'-SiO2 system

    No full text
    A structurally based viscosity model for fully liquid silicate slags has been proposed and applied to the Al2O3-CaO-'FeO'-SiO2 system at metallic iron saturation. The model links the slag viscosity to the internal structure of melts through the concentrations of various anion/cation structural units (SUs). The concentrations of structural units are equivalent to the second nearest neighbor bond concentrations calculated by the quasi-chemical thermodynamic model. This viscosity model describes experimental data over the entire temperature and composition range within the Al2O3-CaO-'FeO'-SiO2 system at metallic iron saturation and can be extended to other industrial slag systems
    corecore