6 research outputs found

    Neisseria gonorrhoeae PilV, a type IV pilus-associated protein essential to human epithelial cell adherence

    Get PDF
    Type IV pili (Tfp) of Neisseria gonorrhoeae, the Gram-negative etiologic agent of gonorrhea, facilitate colonization of the human host. Tfp are assumed to play a key role in the initial adherence to human epithelial cells by virtue of the associated adhesin protein PilC. To examine the structural and functional basis for adherence in more detail, we identified potential genes encoding polypeptides sharing structural similarities to PilE (the Tfp subunit) within the N. gonorrhoeae genome sequence database. We show here that a fiber subunit-like protein, termed PilV, is essential to organelle-associated adherence but dispensable for Tfp biogenesis and other pilus-related phenotypes, including autoagglutination, competence for natural transformation, and twitching motility. The adherence defect in pilV mutants cannot be attributed to reduced levels of piliation, defects in fiber anchoring to the bacterial cell surface, or to unstable pilus expression related to organelle retraction. PilV is expressed at low levels relative to PilE and copurifies with Tfp fibers in a PilC-dependent fashion. Purified Tfp from pilV mutants contain PilC adhesin at reduced levels. Taken together, these data support a model in which PilV functions in adherence by promoting the functional display of PilC in the context of the pilus fiber

    The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins

    Get PDF
    Indexación: Scopus.Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain. © 2017 Oliver, Hernández, Tandberg, Valenzuela, Lagos, Haro, Sánchez, Ruiz, Sanhueza-Oyarzún, Cortés, Villar, Artigues, Winther-Larsen, Avendaño-Herrera and Yáñez.https://www.frontiersin.org/articles/10.3389/fcimb.2017.00420/ful

    Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect Type IV pilus assembly, dynamics and associated functions

    No full text
    Type IV pili (Tfp) are multifunctional surface appendages expressed by many Gram negative species of medical, environmental and industrial importance. The N-terminally localized, so called α-helical spine is the most conserved structural feature of pilin subunits in these organelles. Prevailing models of pilus assembly and structure invariably implicate its importance to membrane trafficking, organelle structure and related functions. Nonetheless, relatively few studies have examined the effects of missense substitutions within this domain. Using Neisseria gonorrhoeae as a model system, we constructed mutants with single and multiple amino acid substitutions localized to this region of the pilin subunit PilE and characterized them with regard to pilin stability, organelle expression and associated phenotypes. The consequences of simultaneous expression of the mutant and wild-type PilE forms were also examined. The findings document for the first time in a defined genetic background the phenomenon of pilin intermolecular complementation in which assembly defective pilin can be rescued into purifiable Tfp by coexpression of wild-type PilE. The results further demonstrate that pilin subunit composition can impact on organelle dynamics mediated by the PilT retraction protein via a process that appears to monitor the efficacy of subunit–subunit interactions. In addition to confirming and extending the evidence for PilE multimerization as an essential component for competence for natural genetic transformation, this work paves the way for detailed studies of Tfp subunit–subunit interactions including self-recognition within the membrane and packing within the pilus polymer

    Substitutions in the N-terminal alpha helical spine of Neisseria gonorrhoeae pilin affect Type IV pilus assembly, dynamics and associated functions

    No full text
    Type IV pili (Tfp) are multifunctional surface appendages expressed by many Gram negative species of medical, environmental and industrial importance. The N-terminally localized, so called α-helical spine is the most conserved structural feature of pilin subunits in these organelles. Prevailing models of pilus assembly and structure invariably implicate its importance to membrane trafficking, organelle structure and related functions. Nonetheless, relatively few studies have examined the effects of missense substitutions within this domain. Using Neisseria gonorrhoeae as a model system, we constructed mutants with single and multiple amino acid substitutions localized to this region of the pilin subunit PilE and characterized them with regard to pilin stability, organelle expression and associated phenotypes. The consequences of simultaneous expression of the mutant and wild-type PilE forms were also examined. The findings document for the first time in a defined genetic background the phenomenon of pilin intermolecular complementation in which assembly defective pilin can be rescued into purifiable Tfp by coexpression of wild-type PilE. The results further demonstrate that pilin subunit composition can impact on organelle dynamics mediated by the PilT retraction protein via a process that appears to monitor the efficacy of subunit–subunit interactions. In addition to confirming and extending the evidence for PilE multimerization as an essential component for competence for natural genetic transformation, this work paves the way for detailed studies of Tfp subunit–subunit interactions including self-recognition within the membrane and packing within the pilus polymer
    corecore