142 research outputs found

    Ultrasonic testing of laboratory samples representing monopile wind turbine foundations

    Get PDF
    Wind energy turbines and offshore hydrocarbon platforms rely on injected concrete grout to support and transfer loads between steel substructures. Deterioration of this grout under large operational stresses can lead to a loss of bonding, the formation of gaps, crushing and the loss of grout from the annulus between the steel substructures. In this paper, the integrity of the grout between two steel panels is experimentally tested using a low-frequency ultrasound backscatter method[1]. The experimental results and modelled outcomes[1] are compared for grout condition classes, including: good condition, gaps between the grout and either steel panel and the complete absence of grout. Pearson correlation coefficients of over 83% are observed when comparing the notch magnitudes and the frequencies on the modelled and experimental reflectance spectra of the front and rear gap, as well as missing grout conditions. Kolmogorov-Smirnov (K-S) similarity tests on the modelled and experimental notch magnitudes indicate a 20% significance on the rear gap and front gap spectra and a 10% significance on the missing grout spectra. The significance of these tests supports the potential application of backscattered low-frequency ultrasound for grout condition inspection. However, development of automated condition recognition algorithms, based on either spectral characteristics or time-localised spectral features of the backscatter, is required to make routine inspection commercially viable

    Agro-materials : a bibliographic review

    Get PDF
    Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed

    Jet disc coupling in black hole binaries

    Full text link
    In the last decade multi-wavelength observations have demonstrated the importance of jets in the energy output of accreting black hole binaries. The observed correlations between the presence of a jet and the state of the accretion flow provide important information on the coupling between accretion and ejection processes. After a brief review of the properties of black hole binaries, I illustrate the connection between accretion and ejection through two particularly interesting examples. First, an INTEGRAL observation of Cygnus X-1 during a 'mini-' state transition reveals disc jet coupling on time scales of orders of hours. Second, the black hole XTEJ1118+480 shows complex correlations between the X-ray and optical emission. Those correlations are interpreted in terms of coupling between disc and jet on time scales of seconds or less. Those observations are discussed in the framework of current models.Comment: Invited talk at the Fifth Stromlo Symposium: Disks, Winds & Jets - from Planets to Quasars. Accepted for publication in Astrophysics & Space Scienc

    Low-Luminosity Accretion in Black Hole X-ray Binaries and Active Galactic Nuclei

    Full text link
    At luminosities below a few percent of Eddington, accreting black holes switch to a hard spectral state which is very different from the soft blackbody-like spectral state that is found at higher luminosities. The hard state is well-described by a two-temperature, optically thin, geometrically thick, advection-dominated accretion flow (ADAF) in which the ions are extremely hot (up to 101210^{12} K near the black hole), the electrons are also hot (∌109−10.5\sim10^{9-10.5} K), and thermal Comptonization dominates the X-ray emission. The radiative efficiency of an ADAF decreases rapidly with decreasing mass accretion rate, becoming extremely low when a source reaches quiescence. ADAFs are expected to have strong outflows, which may explain why relativistic jets are often inferred from the radio emission of these sources. It has been suggested that most of the X-ray emission also comes from a jet, but this is less well established.Comment: To appear in "From X-ray Binaries to Quasars: Black Hole Accretion on All Mass Scales" edited by T. Maccarone, R. Fender, L. Ho, to be published as a special edition of "Astrophysics and Space Science" by Kluwe

    Theory of magnetically powered jets

    Full text link
    The magnetic theory for the production of jets by accreting objects is reviewed with emphasis on outstanding problem areas. An effort is made to show the connections behind the occasionally diverging nomenclature in the literature, to contrast the different points of view about basic mechanisms, and to highlight concepts for interpreting the results of numerical simulations. The role of dissipation of magnetic energy in accelerating the flow is discussed, and its importance for explaining high Lorentz factors. The collimation of jets to the observed narrow angles is discussed, including a critical discussion of the role of `hoop stress'. The transition between disk and outflow is one of the least understood parts of the magnetic theory; its role in setting the mass flux in the wind, in possible modulations of the mass flux, and the uncertainties in treating it realistically are discussed. Current views on most of these problems are still strongly influenced by the restriction to 2 dimensions (axisymmetry) in previous analytical and numerical work; 3-D effects likely to be important are suggested. An interesting problem area is the nature and origin of the strong, preferably highly ordered magnetic fields known to work best for jet production. The observational evidence for such fields and their behavior in numerical simulations is discussed. I argue that the presence or absence of such fields may well be the `second parameter' governing not only the presence of jets but also the X-ray spectra and timing behavior of X-ray binaries.Comment: 29 pages. Publication delays offered the opportunity for further corrections, an expansion of sect 4.2, and one more Fig. To appear in Belloni, T. (ed.): The Jet Paradigm - From Microquasars to Quasars, Lect. Notes Phys. 794 (2009

    Magnetic Reconnection in Extreme Astrophysical Environments

    Full text link
    Magnetic reconnection is a basic plasma process of dramatic rearrangement of magnetic topology, often leading to a violent release of magnetic energy. It is important in magnetic fusion and in space and solar physics --- areas that have so far provided the context for most of reconnection research. Importantly, these environments consist just of electrons and ions and the dissipated energy always stays with the plasma. In contrast, in this paper I introduce a new direction of research, motivated by several important problems in high-energy astrophysics --- reconnection in high energy density (HED) radiative plasmas, where radiation pressure and radiative cooling become dominant factors in the pressure and energy balance. I identify the key processes distinguishing HED reconnection: special-relativistic effects; radiative effects (radiative cooling, radiation pressure, and Compton resistivity); and, at the most extreme end, QED effects, including pair creation. I then discuss the main astrophysical applications --- situations with magnetar-strength fields (exceeding the quantum critical field of about 4 x 10^13 G): giant SGR flares and magnetically-powered central engines and jets of GRBs. Here, magnetic energy density is so high that its dissipation heats the plasma to MeV temperatures. Electron-positron pairs are then copiously produced, making the reconnection layer highly collisional and dressing it in a thick pair coat that traps radiation. The pressure is dominated by radiation and pairs. Yet, radiation diffusion across the layer may be faster than the global Alfv\'en transit time; then, radiative cooling governs the thermodynamics and reconnection becomes a radiative transfer problem, greatly affected by the ultra-strong magnetic field. This overall picture is very different from our traditional picture of reconnection and thus represents a new frontier in reconnection research.Comment: Accepted to Space Science Reviews (special issue on magnetic reconnection). Article is based on an invited review talk at the Yosemite-2010 Workshop on Magnetic Reconnection (Yosemite NP, CA, USA; February 8-12, 2010). 30 pages, no figure

    Cosmology and Cosmogony in a Cyclic Universe

    Get PDF
    In this paper we discuss the properties of the quasi-steady state cosmological model (QSSC) developed in 1993 in its role as a cyclic model of the universe driven by a negative energy scalar field. We discuss the origin of such a scalar field in the primary creation process first described by F. Hoyle and J. V. Narlikar forty years ago. It is shown that the creation processes which takes place in the nuclei of galaxies are closely linked to the high energy and explosive phenomena, which are commonly observed in galaxies at all redshifts. The cyclic nature of the universe provides a natural link between the places of origin of the microwave background radiation (arising in hydrogen burning in stars), and the origin of the lightest nuclei (H, D, He3^3 and He4^4). It also allows us to relate the large scale cyclic properties of the universe to events taking place in the nuclei of galaxies. Observational evidence shows that ejection of matter and energy from these centers in the form of compact objects, gas and relativistic particles is responsible for the population of quasi-stellar objects (QSOs) and gamma-ray burst sources in the universe. In the later parts of the paper we briefly discuss the major unsolved problems of this integrated cosmological and cosmogonical scheme. These are the understanding of the origin of the intrinsic redshifts, and the periodicities in the redshift distribution of the QSOs.Comment: 51 pages including 1 figur

    Magnetic Braking in Differentially Rotating, Relativistic Stars

    Full text link
    We study the magnetic braking and viscous damping of differential rotation in incompressible, uniform density stars in general relativity. Differentially rotating stars can support significantly more mass in equilibrium than nonrotating or uniformly rotating stars. The remnant of a binary neutron star merger or supernova core collapse may produce such a "hypermassive" neutron star. Although a hypermassive neutron star may be stable on a dynamical timescale, magnetic braking and viscous damping of differential rotation will ultimately alter the equilibrium structure, possibly leading to delayed catastrophic collapse. Here we consider the slow-rotation, weak-magnetic field limit in which E_rot << E_mag << W, where E_rot is the rotational kinetic energy, E_mag is the magnetic energy, and W is the gravitational binding energy of the star. We assume the system to be axisymmetric and solve the MHD equations in both Newtonian gravitation and general relativity. Toroidal magnetic fields are generated whenever the angular velocity varies along the initial poloidal field lines. We find that the toroidal fields and angular velocities oscillate independently along each poloidal field line, which enables us to transform the original 2+1 equations into 1+1 form and solve them along each field line independently. The incoherent oscillations on different field lines stir up turbulent-like motion in tens of Alfven timescales ("phase mixing"). In the presence of viscosity, the stars eventually are driven to uniform rotation, with the energy contained in the initial differential rotation going into heat. Our evolution calculations serve as qualitative guides and benchmarks for future, more realistic MHD simulations in full 3+1 general relativity.Comment: 26 pages, 27 graphs, 1 table, accepted for publication by Phys. Rev.

    Non-yrast positive-parity structures in the Îł-soft nucleus Er156

    Get PDF
    Weakly populated band structures have been established in Er156 at low to medium spins, following the Cd114(Ca48,6nÎł) reaction at 215 MeV. High-fold Îł-ray coincidence data were recorded in a high-statistics experiment with the Gammasphere spectrometer. Bands built on the second 0+ and 2+ (Îł-vibrational) states have been established. A large energy staggering between the even- and odd-spin members of the Îł-vibrational band suggests a Îł-soft nature of this nucleus. An additional band is discussed as being based on a rotationally aligned (Îœh9/2,f 7/2)2 structure, coexisting with the systematically observed, more favorable (Îœi13/2)2 aligned structure seen in this mass region

    Collective structures up to spin ∌ 65h in the N 90 isotones 158Er and 157Ho

    Get PDF
    A new collective band with high dynamic moment of inertia in 158Er at spins beyond band termination has been found in addition to the two previously reported ones. The measured transition quadrupole moments (Qt) of these three bands are very similar. These three bands have been suggested to possess a triaxial strongly deformed shape, based on comparisons with calculations using the cranked Nilsson-Strutinsky model and with tilted axis cranking calculations using the Skyrme-Hartree-Fock model. In addition, three collective bands with similar high dynamic moments of inertia, tentatively assigned to 157Ho, have been observed. Thus, it is suggested that all these structures share a common underlying character and that they are most likely associated with triaxial strongly deformed minima which are predicted to be close to the yrast line at spin 50 - 70h
    • 

    corecore