86 research outputs found

    Protective effects of magnolol against oxidized LDL-induced apoptosis in endothelial cells

    Get PDF
    Magnolol, a compound extracted from the Chinese medicinal herb Magnolia officinalis, has several biological effects. However, its protective effects against endothelial injury remain unclear. In this study, we examined whether magnolol prevents oxidized low density lipoprotein (oxLDL)-induced vascular endothelial apoptosis. Incubation of oxLDL with magnolol (2.5-20 mu M) inhibited copper-induced oxidative modification via diene formation, thiobarbituric acid reactive substances (TBARS) assay and electrophoretic mobility assay. Apoptotic cell death as characterized by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) stain. We measured the production of reactive oxygen species (ROS) by using the fluorescent probe 2 ',7 '-dichlorofluorescein acetoxymethyl ester (DCF-AM), and observed the activity of antioxidant enzymes. Furthermore, several apoptotic signaling pathways which showed NF-kappa B activation, increased cytosolic calcium, alteration of mitochondrial membrane potential, cytochrome c release and activation of caspase 3 were also investigated. We demonstrated that magnolol prevented the copper-induced oxidative modification of LDL. Magnolol attenuated the oxLDL-induced ROS generation and subsequent NF-kappa B activation. Furthermore, intracellular calcium accumulation and subsequent mitochondrial membrane potential collapse, cytochome c release and activation of caspase 3 caused by oxLDL were also inhibited by magnolol. Our results suggest that magnolol may have clinical implications in the prevention of atherosclerotic vascular disease through decreasing the oxLDL-induced ROS production

    Ginkgo biloba extract attenuates oxLDL-induced oxidative functional damages in endothelial cells

    Get PDF
    Ou HC, Lee WJ, Lee IT, Chiu TH, Tsai KL, Lin CY, Sheu WH. Ginkgo biloba extract attenuates oxLDL-induced oxidative functional damages in endothelial cells. J Appl Physiol 106: 1674-1685, 2009. First published February 19, 2009; doi:10.1152/japplphysiol.91415.2008.-Atherosclerosis is a chronic inflammatory process with increased oxidative stress in vascular endothelium. Ginkgo biloba extract (GbE), extracted from Ginkgo biloba leaves, has commonly been used as a therapeutic agent for cardiovascular and neurological disorders. The aim of this study was to investigate how GbE protects vascular endothelial cells against the proatherosclerotic stressor oxidized low-density lipoprotein (oxLDL) in vitro. Human umbilical vein endothelial cells (HUVECs) were incubated with GbE (12.5-100 mu g/ml) for 2 h and then incubated with oxLDL (150 mu g/ml) for an additional 24 h. Subsequently, reactive oxygen species (ROS) generation, antioxidant enzyme activities, adhesion to monocytes, cell morphology, viability, and several apoptotic indexes were assessed. Our data show that ROS generation is an upstream signal in oxLDL-treated HUVECs. Cu,Zn-SOD, but not Mn-SOD, was inactivated by oxLDL. In addition, oxLDL diminished expression of endothelial NO synthase and enhanced expression of adhesion molecules (ICAM, VCAM, and E-selectin) and the adherence of monocytic THP-1 cells to HUVECs. Furthermore, oxLDL increased intracellular calcium, disturbed the balance of Bcl-2 family proteins, destabilized mitochondrial membrane potential, and triggered subsequent cytochrome c release into the cytosol and activation of caspase-3. These detrimental effects were ameliorated dose dependently by GbE (P < 0.05). Results from this study may provide insight into a possible molecular mechanism underlying GbE suppression of the oxLDL-mediated vascular endothelial dysfunction

    Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium

    Get PDF
    Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered

    Effects of viscous dissipation and boundary conditions on forced convection in a channel occupied by a saturated porous medium

    Get PDF
    Forced convection with viscous dissipation in a parallel plate channel filled by a saturated porous medium is investigated numerically. Three different viscous dissipation models are examined. Two different sets of wall conditions are considered: isothermal and isoflux. Analytical expressions are also presented for the asymptotic temperature profile and the asymptotic Nusselt number. With isothermal walls, the Brinkman number significantly influences the developing Nusselt number but not the asymptotic one. At constant wall heat flux, both the developing and the asymptotic Nusselt numbers are affected by the value of the Brinkman number. The Nusselt number is sensitive to the porous medium shape factor under all conditions considered

    Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus

    Get PDF
    A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk

    Robust Temporal Constraint Network

    Get PDF
    10.1109/ICTAI.2005.111Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI200582-88PCTI

    Investigation of the physicochemical properties of concentrated fruit vinegar

    No full text
    Since consuming vinegar on a regular basis can contribute to the maintenance of good health, many fruit vinegar products are sold in Taiwan. Using 66 fruit vinegars purchased in local markets as samples, this study investigated the labeling, pricing and physicochemical properties of commercial concentrated fruit vinegar in order to understand their production methods and quality. Two out of the 66 samples had no label, while only 29 samples listed nutrient content. According to the labels, 26 of the fruit vinegar samples were made from juice mixed with grain vinegar (JG), while 28 samples were produced from juice via alcoholic and vinegar fermentation (F). The remaining samples were produced by fermentation and mixed with grain vinegar, alcoholic vinegar and juice. Most of the domestic products, such as mei (also called as Japanese apricot), cider, orange, lemon and blended vinegar, were produced by mixing juice with grain vinegar, whereas most imported cider and wine vinegar were produced by fermentation. Wine vinegar had the highest unit price of all fruit vinegar samples. Appearance of these vinegar samples differed significantly. The variations in pH and acidity were less than other physicochemical properties. Total sugar content of vinegar without sugar was less than 3%, while those with sugar added ranged from 8% to 64%. Most imported cider and wine vinegar samples had no sugar added, with the acidity being about 5 similar to 7%. Most domestic products with sugar added have the average acidity of less than 3%. Variations in soluble solids content and density of the fruit vinegar were similar to the variation in total sugar content. Besides acetic acid, the major organic acids found in fruit vinegar are malic, lactic and citric acids. Mulberry vinegar was found to be higher in lactic and succinic acids than other fruit vinegar. Red wine vinegar was rich in tartaric, malic and lactic acids. The Chinese National Standards (CNS14834, N5239), which regulates edible vinegar focuses on &quot;seasoning vinegar&quot; but not &quot;vinegar beverages&quot;. Since people are paying much more attention to health, the number of concentrated vinegar products in Taiwan is expected to increase in the future. Thus, appropriate rules are required to regulate vinegar products

    Effect of naloxone on the induction of immediately early genes following oxygen- and glucose-deprivation in PC12 cells

    No full text
    Cerebral ischemia/reperfusion involves inflammatory process and naloxone is able to reduce infarct volume and has been used as a therapeutic agent for brain injury. Hypoxia induces the immediate early genes (IEGs) rapidly and transiently that may initiate a cascade of cellular responses that are necessary for survival and normal function. However, the protective effect of naloxone on ischemic/hypoxic neuronal cells was only partly studied. Thus, the effects of naloxone on oxygen- and glucose-deprivation (OGD) and OGD followed by reoxygenation. (OGD/R) on the expression of IEGs were examined in PC12 cells. The result showed that lactate dehydrogenase (LDH) released in the media was reduced by naloxone. The temporal response of IEG mRNA encoding c-fos, c-jun, nur77, and zif268 was induced with different degree of intensity following hypoxia, whereas the level of GAPDH mRNA was relatively constant. However, these signals of c-fos, c-jun, and nur77 by hypoxia were reduced significantly by naloxone. Treatment with OGD also activated mitogen-activated protein kinase (MAPK) pathway. The induction of c-fos, c-jun, nur77, and zif268 by hypoxia was inhibited by naloxone (0.1 mu M) and MAPK inhibitors (10 mu M of U0126, D98059, SB203580). However, naloxone increased the expression of ERK1/2 by OGD concomitantly diminished the LDH release. Thus, the present studies demonstrated that OGD induced IEGs including c-fos, c-jun, nur77, and zif268 and MAPK signaling pathways were regulated differently by naloxone. (C) 2008 Elsevier Ireland Ltd. All rights reserved

    Protective effects of eugenol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells

    No full text
    Eugenol, a natural constituent of a number of aromatic plants and their essential oil fractions, has several biological effects. However, its protective effects against endothelial injury remain unclarified. This study investigates how eugenol affects human umbilical vein endothelial cells (HUVECs) dysfunction mediated by oxidized low density lipoprotein (oxLDL). Our results showed that the suppression of endothelial NO synthase (eNOS) expression, enhancement of adhesion molecules (ICAM, VCAM, and E-selectin) expression, and adherence of monocytic THP1 cells caused by a non-cytotoxic concentration (100 mu g/ml) of oxLDL were ameliorated following a eugenol treatment (12.5-100 mu M) in HUVECs. Eugneol also inhibited the reactive oxygen species (ROS) generation, intracellular calcium accumulation, and the subsequent mitochondrial membrane potential collapse, cytochrome c release and caspase-3 activation induced by oxLDL. The cytotoxicity and apoptotic features induced by a cytotoxic concentration (200 mu g/ml) of oxLDL was also attenuated by eugenol. Our results suggest that eugenol may protect against the oxLDL-induced dysfunction in endothelial cells. (c) 2006 Elsevier Ltd. All rights reserved

    Rosiglitazone inhibits endothelial proliferation and angiogenesis

    No full text
    Rosiglitazone, an insulin sensitizer, is known to offer beneficial effects in retarding atherosclerotic vascular diseases. Since proliferation and angiogenesis are involved in initiation and plaque instability, two critical steps in the cardiovascular events, this study was designed to evaluate the mechanisms of rosiglitazone on endothelial proliferation and angiogenesis. Rosiglitazone-treated human umbilical vein endothelial cells were analyzed for growth rate by use of cell number counting, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay as well as H-3-thymidine incorporation. Cell cycle analysis was detected by flow cytometry and cell cycle-related proteins were measured by Western blot. Effects of rosiglitazone on angiogenesis were assessed by vascular endothelial growth factor (VEGF)-induced tube formation and wound-healing migration. Furthermore, effects of rosiglitazone on actin stress fiber were observed under confocal microscopy. Our data showed that rosiglitazone inhibits endothelial proliferation in a dose-dependent manner. Rosiglitazone caused endothelial arrest at G1 phase via affecting several cell cycle-related proteins that led to attenuate phosphorylation of retinoblastoma protein. Rosiglitazone markedly decreased VEGF-induced tube formation and endothelial cell migration, which might be explained by a disorganization of the actin cytoskeleton. Our data suggest that both anti-proliferative and anti-angiogenic activities in endothelial cells might account for the greater than expected beneficial effects of rosiglitazone for the treatment and prevention of atherosclerosis. (c) 2005 Elsevier Inc. All rights reserved
    corecore