105 research outputs found

    Vector field localization and negative tension branes

    Full text link
    It is shown that negative tension branes in higher dimensions may lead to an effective lower dimensional theory where the gauge-invariant vector fields associated with the fluctuations of the metric are always massless and localized on the brane. Explicit five-dimensional examples of this phenomenon are provided. Furthermore, it is shown that higher dimensional gauge fields can also be localized on these configurations with the zero mode separated from the massive tower by a gap.Comment: 16 pages, LaTeX style; to appear in Phys. Rev.

    On Effective Theory of Brane World with Small Tension

    Get PDF
    The five dimensional theory compactified on S1S^1 with two ``branes'' (two domain walls) embedded in it is constructed, based on the field-theoretic mechanism to generate the ``brane''. Some light states localized in the ``brane'' appear in the theory. One is the Nambu-Goldstone boson, which corresponds to the breaking of the translational invariance in the transverse direction of the ``brane''. In addition, if the tension of the ``brane'' is smaller than the fundamental scale of the original theory, it is found that there may exist not only massless states but also some massive states lighter than the fundamental scale in the ``brane''. We analyze the four dimensional effective theory by integrating out the freedom of the fifth dimension. We show that some effective couplings can be explicitly calculated. As one of our results, some effective couplings of the state localized in the ``brane'' to the higher Kaluza-Klein modes in the bulk are found to be suppressed by the width of the ``brane''. The resultant suppression factor can be quantitatively different from the one analyzed by Bando et al. using the Nambu-Goto action, while they are qualitatively the same.Comment: 17 pages, uses REVTEX macr

    Core Structure of Global Vortices in Brane World Models

    Full text link
    We study analytically and numerically the core structure of global vortices forming on topologically deformed brane-worlds with a single toroidally compact extra dimension. It is shown that for an extra dimension size larger than the scale of symmetry breaking the magnitude of the complex scalar field at the vortex center can dynamically remain non-zero. Singlevaluedness and regularity are not violated. Instead, the winding escapes to the extra dimension at the vortex center. As the extra dimension size decreases the field magnitude at the core dynamically decreases also and in the limit of zero extra dimension size we reobtain the familiar global vortex solution. Extensions to other types of defects and gauged symmetries are also discussed.Comment: 6 two column pages, 3 figure

    Holographic principle in the BDL brane cosmology

    Get PDF
    We study the holographic principle in the brane cosmology. Especially we describe how to accommodate the 5D anti de Sitter Schwarzschild (AdSS5_5) black hole in the Binetruy-Deffayet-Langlois (BDL) approach of brane cosmology. It is easy to make a connection between a mass MM of the AdSS5_5 black hole and a conformal field theory (CFT)-radiation dominated universe on the brane in the moving domain wall approach. But this is not established in the BDL approach. In this case we use two parameters C1,C2C_1, C_2 in the Friedmann equation. These arise from integration and are really related to the choice of initial bulk matter. If one chooses a bulk energy density ρB\rho_B to account for a mass MM of the AdSS5_5 black hole and the static fifth dimension, a CFT-radiation term with ρCFT∌M/a4\rho_{CFT} \sim M/a^{4} comes out from the bulk matter without introducing a localized matter distribution on the brane. This means that the holographic principle can be established in the BDL brane cosmology.Comment: 9 pages, a version to appear in PR

    Single-Brane Cosmological Solutions with a Stable Compact Extra Dimension

    Get PDF
    We consider 5-dimensional cosmological solutions of a single brane. The correct cosmology on the brane, i.e., governed by the standard 4-dimensional Friedmann equation, and stable compactification of the extra dimension is guaranteed by the existence of a non-vanishing \hat{T}^5_5 which is proportional to the 4-dimensional trace of the energy-momentum tensor. We show that this component of the energy-momentum tensor arises from the backreaction of the dilaton coupling to the brane. The same positive features are exhibited in solutions found in the presence of non-vanishing cosmological constants both on the brane (\Lambda_{br}) and in the bulk (\Lambda_B). Moreover, the restoration of the Friedmann equation, with the correct sign, takes place for both signs of ΛB\Lambda_B so long as the sign of Λbr\Lambda_{br} is opposite ΛB\Lambda_B in order to cancel the energy densities of the two cosmological constants. We further extend our single-brane thin-wall solution to allow a brane with finite thickness.Comment: 25 pages, Latex file, no figures, comments added, references updated, final version to appear in Physical Review

    Primordial gravitational waves in inflationary braneworld

    Get PDF
    We study primordial gravitational waves from inflation in Randall-Sundrum braneworld model. The effect of small change of the Hubble parameter during inflation is investigated using a toy model given by connecting two de Sitter branes. We analyze the power spectrum of final zero-mode gravitons, which is generated from the vacuum fluctuations of both initial Kaluza-Klein modes and zero-mode. The amplitude of fluctuations is confirmed to agree with the four-dimensional one at low energies, whereas it is enhanced due to the normalization factor of zero-mode at high energies. We show that the five-dimensional spectrum can be well approximated by applying a simple mapping to the four-dimensional fluctuation amplitude.Comment: 16 pages, 4 figures, typos correcte

    Holographic Domains of Anti-de Sitter Space

    Full text link
    An AdS_4 brane embedded in AdS_5 exhibits the novel feature that a four-dimensional graviton is localized near the brane, but the majority of the infinite bulk away from the brane where the warp factor diverges does not see four-dimensional gravity. A naive application of the holographic principle from the point of view of the four-dimensional observer would lead to a paradox; a global holographic mapping would require infinite entropy density. In this paper, we show that this paradox is resolved by the proper covariant formulation of the holographic principle. This is the first explicit example of a time-independent metric for which the spacelike formulation of the holographic principle is manifestly inadequate. Further confirmation of the correctness of this approach is that light-rays leaving the brane intersect at the location where we expect four-dimensional gravity to no longer dominate. We also present a simple method of locating CFT excitations dual to a particle in the bulk. We find that the holographic image on the brane moves off to infinity precisely when the particle exits the brane's holographic domain. Our analysis yields an improved understanding of the physics of the AdS_4/AdS_5 model.Comment: 29 pages, 6 figure

    Dilaton-driven brane inflation in type IIB string theory

    Get PDF
    We consider the cosmological evolution of the three-brane in the background of type IIB string theory. For two different backgrounds which give nontrivial dilaton profile we have derived the Friedman-like equations. These give the cosmological evolution which is similar to the one by matter density on the universe brane. The effective density blows up as we move towards the singularity showing the initial singularity problem. The analysis shows that when there is axion field in the ambient space the recollapsing of the universe occurs faster compared with the case without axion field.Comment: typos corrected, reference added, version to appear in Physical Review

    Quantum fluctuations in brane-world inflation without inflaton on the brane

    Full text link
    A Randall-Sundrum type brane-cosmological model in which slow-roll inflation on the brane is driven solely by a bulk scalar field was recently proposed by Himemoto and Sasaki. We analyze their model in detail and calculate the quantum fluctuations of the bulk scalar field ϕ\phi with m2=Vâ€Čâ€Č(ϕ)m^2=V''(\phi). We decompose the bulk scalar field into the infinite mass spectrum of 4-dimensional fields; the field with the smallest mass-square, called the zero-mode, and the Kaluza-Klein modes above it with a mass gap. We find the zero-mode dominance of the classical solution holds if ∣m2∣ℓˉ2â‰Ș1|m^2|\bar\ell^2\ll1, where ℓˉ\bar{\ell} is the curvature radius of the effectively anti-de Sitter bulk, but it is violated if ∣m2∣ℓˉ2≫1|m^2|\bar\ell^2\gg1, though the violation is very small. Then we evaluate the vacuum expectation value on the brane. We find the zero-mode contribution completely dominates if ∣m2∣ℓˉ2â‰Ș1|m^2|\bar{\ell}^2\ll 1 similar to the case of classical background. In contrast, we find the Kaluza-Klein contribution is small but non-negligible if the value of ∣m2∣ℓˉ2|m^2|\bar{\ell}^2 is large.Comment: 12pages, 1 figure, typos corrected, a couple of paragraphs modified but no major change in the text, final version to be published in PR

    D-braneworld cosmology

    Full text link
    We discuss D-braneworld cosmology, that is, the brane is described by the Born-Infeld action. Compared with the usual Randall-Sundrum braneworld cosmology where the brane action is the Nambu-Goto one, we can see some drastic changes at the very early universe: (i)universe may experience the rapid accelerating phase (ii)the closed universe may avoid the initial singularity. We also briefly address the dynamics of the cosmology in the open string metric, which might be favorer than the induced metric from the view point of the D-brane.Comment: 6 pages, 3 figures, minor corrections, accepted for publication in Phys. Rev.
    • 

    corecore