48 research outputs found

    Massive binary black holes in galactic nuclei and their path to coalescence

    Full text link
    Massive binary black holes form at the centre of galaxies that experience a merger episode. They are expected to coalesce into a larger black hole, following the emission of gravitational waves. Coalescing massive binary black holes are among the loudest sources of gravitational waves in the Universe, and the detection of these events is at the frontier of contemporary astrophysics. Understanding the black hole binary formation path and dynamics in galaxy mergers is therefore mandatory. A key question poses: during a merger, will the black holes descend over time on closer orbits, form a Keplerian binary and coalesce shortly after? Here we review progress on the fate of black holes in both major and minor mergers of galaxies, either gas-free or gas-rich, in smooth and clumpy circum-nuclear discs after a galactic merger, and in circum-binary discs present on the smallest scales inside the relic nucleus.Comment: Accepted for publication in Space Science Reviews. To appear in hard cover in the Space Sciences Series of ISSI "The Physics of Accretion onto Black Holes" (Springer Publisher

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference

    Measurement of the νe and total 8B solar neutrino fluxes with the Sudbury Neutrino Observatory phase-III data set

    Get PDF
    This paper details the solar neutrino analysis of the 385.17-day phase-III data set acquired by the Sudbury Neutrino Observatory (SNO). An array of 3He proportional counters was installed in the heavy-water target to measure precisely the rate of neutrino-deuteron neutral-current interactions. This technique to determine the total active 8B solar neutrino flux was largely independent of the methods employed in previous phases. The total flux of active neutrinos was measured to be 5.54-0.31+0.33(stat.)-0.34+0.36(syst.)×106 cm-2 s-1, consistent with previous measurements and standard solar models. A global analysis of solar and reactor neutrino mixing parameters yielded the best-fit values of Δm2=7.59-0.21+0.19×10 -5eV2 and θ=34.4-1.2+1.3degrees

    Mudança organizacional: uma abordagem preliminar

    Full text link

    Chronic cardiac denervation affects the speed of coronary vascular regulation

    Get PDF
    OBJECTIVE: We tested the hypothesis that the rate of adaptation of coronary metabolic vasodilatation and autoregulation is modulated by the cardiac nerves. METHODS: Anaesthetised dogs (seven innervated (control) and seven with denervated hearts) were subjected to controlled pressure perfusion of the left main coronary artery. Heart rate was controlled by pacing. RESULTS: The steady state autoregulation curves and metabolic regulation curves were similar in the two groups. A sudden increase or decrease in heart rate was associated with a faster response (22% shorter half-times) in the innervated than the denervated dogs (P < 0.001). A sudden increase or decrease in coronary arterial perfusion pressure was associated with a slower response (24% longer half-times) in the innervated than the denervated hearts (P < 0.005). CONCLUSIONS: We conclude that the speed of response to metabolic and perfusion pressure changes is partly mediated by cardio-cardiac reflexes. Reflex coronary vasodilatation appears to reinforce the metabolic vasodilatation of a heart rate increase and oppose the vasoconstriction in response to increased perfusion pressur
    corecore