704 research outputs found

    Topological Charge Fluctuations and Low-Lying Dirac Eigenmodes

    Get PDF
    We discuss the utility of low-lying Dirac eigenmodes for studying the nature of topological charge fluctuations in QCD. The implications of previous results using the local chirality histogram method are discussed, and the new results using the overlap Dirac operator in Wilson gauge backgrounds at lattice spacings ranging from a~0.04 fm to a~0.12 fm are reported. While the degree of local chirality does not change appreciably closer to the continuum limit, we find that the size and density of local structures responsible for chiral peaking do change significantly. The resulting values are in disagreement with the assumptions of the Instanton Liquid Model. We conclude that the fluctuations of topological charge in the QCD vacuum are not locally quantized.Comment: 3 pages, 4 figures, Lattice2001(confinement

    Low-dimensional long-range topological structure in the QCD vacuum

    Full text link
    Lattice topological charge associated with Ginsparg-Wilson fermions exhibits generic topological stability over quantum ensemble of configurations contributing to the QCD path integral. Moreover, the underlying chiral symmetry leads to the suppression of ultraviolet noise in the associated topological charge densities ("chiral smoothing"). This provides a solid foundation for the direct study of the role of topological charge fluctuations in the physics of QCD vacuum. Using these tools it was recently demonstrated that: (a) there is a well-defined space-time structure (order) in topological charge density (defined through overlap fermions) for typical configurations contributing to QCD path integral; (b) this fundamental structure is low-dimensional, exhibiting sign-coherent behavior on subsets of dimension less than four and not less than one; (c) the structure has a long-range global character (spreading over maximal space-time distances) and is built around the locally one-dimensional network of strong fields (skeleton). In this talk we elaborate on certain aspects and implications of these results.Comment: 3 pages, 1 figure; Lattice2003(topology

    Scalar Hair of Global Defect and Black Brane World

    Full text link
    We consider a complex scalar field in (p+3)-dimensional bulk with a negative cosmological constant and study global vortices in two extra-dimensions. We reexamine carefully the coupled scalar and Einstein equations, and show that the boundary value of scalar amplitude at infinity of the extra-dimensions should be smaller than vacuum expectation value. The brane world has a cigar-like geometry with an exponentially decaying warp factor and a flat thick p-brane is embedded. Since a coordinate transformation identifies the obtained brane world as a black p-brane world bounded by a horizon, this strange boundary condition of the scalar amplitude is understood as existence of a short scalar hair.Comment: 26 pages, 2 figure

    Blocking Effect of an Immuno-Suppressive Agent, Cynarin, on CD28 of T-Cell Receptor

    Get PDF
    Purpose: Cynarin, a potential immunosuppressant that blocks the interaction between the CD28 of T-cell receptor and CD80 of antigen presenting cells, was found in Echinacea purpurea by a new pharmaceutical screening method: After Flowing Through Immobilized Receptor (AFTIR; Dong et al., J Med Chem, 49:1845-1854, 2006). This Echinacea component is the first small molecule that is able to specifically block "signal 2" of T-cell activation. Methods: In this study, we used the AFTIR method to further confirm that cynarin effectively blocked the binding between CD80 of B-cells and CD28 of T-cells, and provide details of its mechanism of action. Results: The experimental results showed that cynarin blocked about 87% of the CD28-dependent "signal 2" pathway of T-cell activation under the condition of one to one ratio of T-cell and B-cell in vitro. Theoretical structure modeling showed that cynarin binds to the "G-pocket" of CD28 (Evans et al., Nat Immunol, 6:271-279, 2005), and thus interrupts the site of interaction between CD28 and CD80. Conclusions: These results confirm both that AFTIR is a promising method for screening selective active compounds from herbal medicine and that cynarin has great potential as an immuno-suppressive agent

    Differential scanning calorimetry (DSC) and thermodynamic prediction of liquid fraction vs temperature for two high-performance alloys for semi-solid processing (Al-Si-Cu-Mg (319s) and Al-Cu-Ag (201))

    Get PDF
    There is a need to extend the application of semi-solid processing (SSP) to higher performance alloys such as 319s (Al-Si-Cu-Mg) and 201 (Al-Cu-Ag). The melting of these two alloys was investigated using differential scanning calorimetry (DSC) and thermodynamic prediction. The alloys had been processed by magneto-hydrodynamic (MHD) stirring before receipt to produce a microstructure suitable for SSP. The DSC results for the as-received MHD material were compared with those for material which has been taken through a complete DSC cycle and then reheated for a second DSC run. The effects of microsegregation were then analyzed. A higher liquid fraction for a particular temperature is found in the second DSC run than the first. Microstructural observations suggest this is because the intermetallics which form during the first cooling cycle tend to co-located. Quaternary and ternary reactions then occur during the second DSC heat and the co-location leads to enhanced peaks. The calculated liquid fraction is lower with 10 K/min DSC heating rate comparing with 3 K/min at a given temperature. The DSC scan rate must therefore be carefully considered if it is to be used to identify temperature parameters or the suitability of alloys for SSP. In addition, the starting material for DSC must represent the starting material for the SSP. With thermodynamic prediction, the equilibrium condition will provide better guidance for the thixoforming of MHD stirred starting material than the Scheil condition. The Scheil mode approximates more closely with a strongly microsegregated state

    Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar

    Full text link
    The branching ratios and Angular distributions for J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
    corecore