45 research outputs found

    Spin tunnelling in mesoscopic systems

    Full text link
    We study spin tunnelling in molecular magnets as an instance of a mesoscopic phenomenon, with special emphasis on the molecule Fe8. We show that the tunnel splitting between various pairs of Zeeman levels in this molecule oscillates as a function of applied magnetic field, vanishing completely at special points in the space of magnetic fields, known as diabolical points. This phenomena is explained in terms of two approaches, one based on spin-coherent-state path integrals, and the other on a generalization of the phase integral (or WKB) method to difference equations. Explicit formulas for the diabolical points are obtained for a model Hamiltonian.Comment: 13 pages, 5 figures, uses Pramana style files; conference proceedings articl

    Triplet superconductivity in quasi one-dimensional systems

    Full text link
    We study a Hubbard hamiltonian, including a quite general nearest-neighbor interaction, parametrized by repulsion V, exchange interactions Jz, Jperp, bond-charge interaction X and hopping of pairs W. The case of correlated hopping, in which the hopping between nearest neighbors depends upon the occupation of the two sites involved, is also described by the model for sufficiently weak interactions. We study the model in one dimension with usual continuum-limit field theory techniques, and determine the phase diagram. For arbitrary filling, we find a very simple necessary condition for the existence of dominant triplet superconducting correlations at large distance in the spin SU(2) symmetric case: 4V+J<0. In the correlated hopping model, the three-body interaction should be negative for positive V. We also compare the predictions of this weak-coupling treatment with numerical exact results for the correlated-hopping model obtained by diagonalizing small chains, and using novel techniques to determine the opening of the spin gap.Comment: 8 pages, 3 figure

    Fabrication of quantum emitters in aluminum nitride by Al-ion implantation and thermal annealing

    Get PDF
    Single-photon emitters (SPEs) within wide-bandgap materials represent an appealing platform for the development of single-photon sources operating at room temperatures. Group III-nitrides have previously been shown to host efficient SPEs, which are attributed to deep energy levels within the large bandgap of the material, in a configuration that is similar to extensively investigated color centers in diamond. Anti-bunched emission from defect centers within gallium nitride and aluminum nitride (AlN) have been recently demonstrated. While such emitters are particularly interesting due to the compatibility of III-nitrides with cleanroom processes, the nature of such defects and the optimal conditions for forming them are not fully understood. Here, we investigate Al implantation on a commercial AlN epilayer through subsequent steps of thermal annealing and confocal microscopy measurements. We observe a fluence-dependent increase in the density of the emitters, resulting in the creation of ensembles at the maximum implantation fluence. Annealing at 600 °C results in the optimal yield in SPEs formation at the maximum fluence, while a significant reduction in SPE density is observed at lower fluences. These findings suggest that the mechanism of vacancy formation plays a key role in the creation of the emitters and open enticing perspectives in the defect engineering of SPEs in solid state

    Tobacco use and psychosis risk in persons at clinical high risk

    Get PDF
    Aim: To evaluate the role of tobacco use in the development of psychosis in individuals at clinical high risk. Method: The North American Prodrome Longitudinal Study is a 2-year multi-site prospective case control study of persons at clinical high risk that aims to better understand predictors and mechanisms for the development of psychosis. The cohort consisted of 764 clinical high risk and 279 healthy comparison subjects. Clinical assessments included tobacco and substance use and several risk factors associated with smoking in general population studies. Results: Clinical high risk subjects were more likely to smoke cigarettes than unaffected subjects (light smoking odds ratio [OR] = 3.0, 95% confidence interval [CI] = 1.9-5; heavy smoking OR = 4.8, 95% CI = 1.7-13.7). In both groups, smoking was associated with mood, substance use, stress and perceived discrimination and in clinical high risk subjects with childhood emotional neglect and adaption to school. Clinical high risk subjects reported higher rates of several factors previously associated with smoking, including substance use, anxiety, trauma and perceived discrimination. After controlling for these potential factors, the relationship between clinical high risk state and smoking was no longer significant (light smoking OR = 0.9, 95% CI = 0.4-2.2; heavy smoking OR = 0.3, 95% CI = 0.05-2.3). Moreover, baseline smoking status (hazard ratio [HR] = 1.16, 95% CI = 0.82-1.65) and categorization as ever smoked (HR = 1.3, 95% CI = 0.8-2.1) did not predict time to conversion. Conclusion: Persons at high risk for psychosis are more likely to smoke and have more factors associated with smoking than controls. Smoking status in clinical high risk subjects does not predict conversion. These findings do not support a causal relationship between smoking and psychosis

    Biomarkers Enhance Discrimination and Prognosis of Type 2 Myocardial Infarction

    Get PDF
    Background: The observed incidence of type 2 myocardial infarction (T2MI) is expected to increase with the implementation of increasingly sensitive cardiac troponin (cTn) assays. However, it remains to be determined how to diagnose, risk stratify and treat patients with T2MI. We aimed to discriminate and risk-stratify T2MI using biomarkers. Methods: Patients presenting to the Emergency Department with chest pain, enrolled in the CHOPIN study, were retrospectively analyzed. Two cardiologists adjudicated type 1 MI (T1MI) and T2MI. The prognostic ability of several biomarkers alone or in combination to discriminate T2MI from T1MI was investigated using receiver operating characteristic (ROC) curve analysis. The biomarkers analyzed were cTnI, copeptin, mid-regional pro-atrial natriuretic peptide (MRproANP), C-terminal pro-endothelin-1 (CT-proET1), mid-regional pro-adrenomedullin (MRproADM) and procalcitonin. Prognostic utility of these biomarkers for all-cause mortality and major adverse cardiovascular event (MACE: a composite of acute MI, unstable angina pectoris, reinfarction, heart failure, and stroke) at 180-day follow-up was also investigated. Results: Among the 2071 patients, T1MI and T2MI were adjudicated in 94 and 176 patients, respectively. Patients with T1MI had higher levels of baseline cTnI, while those with T2MI had higher baseline levels of MR-proANP, CT-proET1, MR-proADM, and procalcitonin. The area under the ROC curve (AUC) for the diagnosis of T2MI was higher for CT-proET1, MRproADM and MR-proANP (0.765, 0.750, and 0.733, respectively) than for cTnI (0.631). Combining all biomarkers resulted in a similar accuracy to a model using clinical variables and cTnI (0.854 versus 0.884, p = 0.294). Addition of biomarkers to the clinical model yielded the highest AUC (0.917). Other biomarkers, but not cTnI, were associated with mortality and MACE at 180-day among all patients, with no interaction between the diagnosis of T1MI or T2MI. Conclusions: Assessment of biomarkers reflecting pathophysiologic processes occurring with T2MI might help differentiate it from T1MI. Additionally, all biomarkers measured, except cTnI, were significant predictors of prognosis, regardless of type of MI
    corecore