88 research outputs found

    Reference crop evapotranspiration derived from geo-stationary satellite imagery: a case study for the Fogera flood plain, NW-Ethiopia and the Jordan Valley, Jordan

    Get PDF
    First results are shown of a project aiming to estimate daily values of reference crop evapotranspiration ET0 from geo-stationary satellite imagery. In particular, for Woreta, a site in the Ethiopian highland at an elevation of about 1800 m, we tested a radiation-temperature based approximate formula proposed by Makkink (MAK), adopting ET0 evaluated with the version of the Penman-Monteith equation described in the FAO Irrigation and Drainage paper 56 as the most accurate estimate. More precisely we used the latter with measured daily solar radiation as input (denoted by PMFAO-Rs). Our data set for Woreta concerns a period where the surface was fully covered with short green non-stressed vegetation. Our project was carried out in the context of the Satellite Application Facility on Land Surface Analysis (LANDSAF) facility. Among others, the scope of LANDSAF is to increase benefit from the EUMETSAT Satellite Meteosat Second Generation (MSG). In this study we applied daily values of downward solar radiation at the surface obtained from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) radiometer. In addition, air temperature at 2m was obtained from 3-hourly forecasts provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). Both MAK and PMFAO-Rs contain the psychrometric "constant", which is proportional to air pressure, which, in turn, decreases with elevation. In order to test elevation effects we tested MAK and its LANDSAF input data for 2 sites in the Jordan Valley located about 250 m b.s.l. Except for a small underestimation of air temperature at the Ethiopian site at 1800 m, the first results of our LANDSAF-ET0 project are promising. If our approach to derive ET0 proves successfully, then the LANDSAF will be able to initiate nearly real time free distribution of ET0 for the full MSG disk

    The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods

    Get PDF
    The eddy-covariance method is the primary way of measuring turbulent fluxes directly. Many investigators have found that these flux measurements often do not satisfy a fundamental criterionÂżclosure of the surface energy balance. This study investigates to what extent the eddy-covariance measurement technology can be made responsible for this deficiency, in particular the effects of instrumentation or of the post-field data processing. Therefore, current eddy-covariance sensors and several post-field data processing methods were compared. The differences in methodology resulted in deviations of 10% for the sensible heat flux and of 15% for the latent heat flux for an averaging time of 30 min. These disparities were mostly due to different sensor separation corrections and a linear detrending of the data. The impact of different instrumentation on the resulting heat flux estimates was significantly higher. Large deviations from the reference system of up to 50% were found for some sensor combinations. However, very good measurement quality was found for a CSAT3 sonic together with a KH20 krypton hygrometer and also for a UW sonic together with a KH20. If these systems are well calibrated and maintained, an accuracy of better than 5% can be achieved for 30-min values of sensible and latent heat flux measurements. The results from the sonic anemometers Gill Solent-HS, ATI-K, Metek USA-1, and R.M. Young 81000 showed more or less larger deviations from the reference system. The LI-COR LI-7500 open-path H2O/CO2 gas analyser in the test was one of the first serial numbers of this sensor type and had technical problems regarding direct solar radiation sensitivity and signal delay. These problems are known by the manufacturer and improvements of the sensor have since been made

    The energy balance of the earth's surface : a practical approach

    No full text
    This study is devoted to the energy balance of the earth's surface with a special emphasis on practical applications. A simple picture of the energy exchange processes that take place at the ground is the following. Per unit time and area an amount of radiant energy is supplied to the surface. This radiation originates partly from the sun, but an~ other fraction is coming from the atmosphere (= infra-red radiation emitted by clouds, water vapour and CO 2 ). From these gain terms the following losses must be subtracted: (a) the reflected solar radiation and (b) the infra-red radiation emitted by the surface itself. The final result is that a net amount of radiant energy is received by the surface, simply denoted as net radiation. At the ground net radiation is used to heat the ground (soil heat flux), to evaporate liquid water (evaporation), and to heat the atmosphere (sensible heat flux). In this simple picture we have neglected minor terms such as the energy used by the plants for their photosynthesis.Due to the high value of the latent heat of vaporization, the energy needed for evaporation is often an important term in the energy balance. In addition the energy balance of the earth's surface is linked with the water budget of both the atmosphere and the earth's surface, through the evaporation at the ground.Several practical questions in agriculture, hydrology and meteorology require information m the energy balance of the surface. It is the purpose of this study to find solutions for some of these problems.In hydrology one is mainly concerned in evaporation averaged over 1 day or more on a regional scale. Generally, this refers to land surfaces, but the evaporation of inland lakes or reservoirs is also of interest. In this context we also mention the problem of thermal pollution of open water bodies by industry or power plants. For this the so-called natural water temperature must be known, which is the temperature of the water in the hypothetical case that there is no artificial heating. It appears that this temperature depends mainly m the energy balance at the surface. In Chapter VI a model dealing with this problem is discussed.In agriculture one is interested also in evaporation. Now time intervals ranging from half an hour to several days are of interest.The relation between evaporation an the one side and plant diseases and pest control an the other can be mentioned.Furthermore, the yield of several agricultural crops is the greatest when the evapotranspiration is potential (= a maximum under the given weather conditions). When the crop transpires less than the potential rate, because the soil is too dry, the yield can be augmented by artificial precipitation. For applications such as these cheap and simple techniques are required for measuring the actual and potential evaporation. This applies also to agricultural research projects, e.g. to determine yield-water use relationships.In Chapter II simple measurement techniques are considered.Recent developments in meteorology have led to an increase of the interest in the energy balance of the earth's surface, especially in the input of heat and humidity at ground level into the atmosphere. Examples are models for the atmospheric boundary layer and related models for short range weather forecasts (12-18 h ahead). These models require simple parameterizations of the surface fluxes. This applies also to weather forecast models on a medium time range (3-10 days ahead).Since the height of the boundary layer is related to the heat input at the ground information an the surface energy balance is needed also for air pollution problems.In Chapter III a simple parameterization for evaporation and sensible heat flux is described that can be used for these type of problems.Usually, the only available data are standard weather observations. For that reason, many of the practical questions, mentioned above, can be formulated as: "How can the surface energy balance be estimated from standard weather data only'?" In Chapters III and VI possible answers to that question are discussed.Chapter II is devoted to simple measuring techniques that, in principle, can be used on an operational base. These methods will be compared with the so-called energy-balance method, using Bowen's ratio.In Chapter III two models for evaporation and sensible heat flux during daytime are compared. Both require standard weather data as input and an indication of the surface wetness. The first model needs more data, but contains more physics. The second is less complete, but requires less input data.Chapter IV has a mainly theoretical character. A model is presented that couples the evolution of the atmospheric boundary layer to the surface energy balance. It describes the course of the height, temperature and humidity of the boundary layer, together with the surface fluxes, when the initial profiles of temperature and humidity the radiative forcing and the surface wetness are known. It is restricted to convective conditions. Model output will be compared with observations.In Chapter V an empirical evaporation model for open water is considered. Comparisons with observations of evaporation of the former Lake Flevo will be made; the annual and the diurnal cycle will be considered.In Chapter VI a model for the (natural) temperature and energy balance of inland lakes and water reservoirs is discussed that requires standard weather data only. A comparison between the calculated and measured water temperature will be given. This concerns two adjacent water reservoirs, which have about the same size, but which differ in depth (5 and 15 m). This is of importance, since the water temperature also depends on water depth.At some places we made new modifications, but most of the theoretical concepts applied in this study are adopted from literature. This is inherent in our practical approach. Some of the theories used have been available for many years. But, e.g. because no suitable instruments were available, they were not usefull for practical applications. Recent developments in the field of instrumentation and data handling have changed the situation-to our advantage. A good example is the temperature fluctuation method for measuring the sensible heat flux (discussed in 11.4). The theoretical basis for this approach was given by Prandtl already in 1932. But for an experimental verification we had to wait until the sixties and early seventies. In that period instruments were developed to measure turbulent surface fluxes and fast temperature fluctuations, while also the data handling techniques were improved significantly. Finally) the method wouldn't be operationally until quite recently.For the verification of the parameterizations, measuring techniques and models treated in this study, we used data collected at the 200 m mast at Cabauw, and at the nearby micrometeorological field, of the Royal Netherlands Meteorological Institute

    Comments on "Greenhouse effect in semi-transparent planetary atmospheres"

    No full text
    This commentary is meant to show that several relationships derived in Miskolczi (2007) are debatable and, in my opinion, based on untenable physics
    • …
    corecore