767 research outputs found
Differential effects of sulfhydryl reagents on saxitoxin and tetrodotoxin block of voltage-dependent Na channels
We have probed a cysteine residue that confers resistance to tetrodotoxin (TTX) block in heart Na channels, with membrane-impermeant, cysteine-specific, methanethiosulfonate (MTS) analogs. Covalent addition of a positively charged group to the cysteinyl sulfhydryl reduced pore conductance by 87%. The effect was selectively prevented by treatment with TTX, but not saxitoxin (STX). Addition of a negatively charged group selectively inhibited STX block without affecting TTX block. These results agree with models that place an exposed cysteinyl sulfhydryl in the TTX site adjacent to the mouth of the pore, but do not support the contention that STX and TTX are interchangeable. The surprising differences between the two toxins are consistent with the hypothesis that the toxin-receptor complex can assume different conformations when STX or TTX bound
ON COMPUTER SIMULATION AS A COMPONENT IN INFORMATION SYSTEMS RESEARCH
Computer simulation is widely regarded as a useful activity during various phases of research. However, depending on its context, the meaning, definition, and focus of the term can vary: In traffic planning, for example, simulation is used to determine useful configurations of a road network, thus focusing on the environment. An entirely different perspective is used within multi-agent systems. In such settings, the environment of the agents remains static, while the interesting research questions concern the behavior of the agents themselves. The research focuses on the microscopic level and the resulting emergent behavior. This article puts such diverse meanings in the context of a research process that treats descriptive and prescriptive research as two sides of the same coin. We develop a framework to classify different types of simulation, based on the actual research activity they are intended to be used for. Two case studies supplement the framework
Region graph partition function expansion and approximate free energy landscapes: Theory and some numerical results
Graphical models for finite-dimensional spin glasses and real-world
combinatorial optimization and satisfaction problems usually have an abundant
number of short loops. The cluster variation method and its extension, the
region graph method, are theoretical approaches for treating the complicated
short-loop-induced local correlations. For graphical models represented by
non-redundant or redundant region graphs, approximate free energy landscapes
are constructed in this paper through the mathematical framework of region
graph partition function expansion. Several free energy functionals are
obtained, each of which use a set of probability distribution functions or
functionals as order parameters. These probability distribution
function/functionals are required to satisfy the region graph
belief-propagation equation or the region graph survey-propagation equation to
ensure vanishing correction contributions of region subgraphs with dangling
edges. As a simple application of the general theory, we perform region graph
belief-propagation simulations on the square-lattice ferromagnetic Ising model
and the Edwards-Anderson model. Considerable improvements over the conventional
Bethe-Peierls approximation are achieved. Collective domains of different sizes
in the disordered and frustrated square lattice are identified by the
message-passing procedure. Such collective domains and the frustrations among
them are responsible for the low-temperature glass-like dynamical behaviors of
the system.Comment: 30 pages, 11 figures. More discussion on redundant region graphs. To
be published by Journal of Statistical Physic
Dynamic scaling and aging phenomena in short-range Ising spin glass: CuCoCl-FeCl graphite bi-intercalation compound
Static and dynamic behavior of short-range Ising-spin glass
CuCoCl-FeCl graphite bi-intercalation compounds
(GBIC) has been studied with SQUID DC and AC magnetic susceptibility. The
dependence of the zero-field relaxation time above a spin-freezing
temperature (= 3.92 0.11 K) is well described by critical slowing
down. The absorption below decreases with
increasing angular frequency , which is in contrast to the case of 3D
Ising spin glass. The dynamic freezing temperature at which
dd, is determined as a function of
frequency (0.01 Hz 1 kHz) and magnetic field (0 5 kOe). The dynamic scaling analysis of the relaxation time
defined as at suggests the absence of
SG phase in the presence of (at least above 100 Oe). Dynamic scaling
analysis of and near
leads to the critical exponents ( = 0.36 0.03, = 3.5
0.4, = 1.4 0.2, = 6.6 1.2, = 0.24
0.02, and = 0.13 0.02). The aging phenomenon is studied through
the absorption below . It obeys a
power-law decay with an exponent . The rejuvenation effect is also observed under
sufficiently large (temperature and magnetic-field) perturbations.Comment: 14 pages, 19 figures; to be published in Phys. Rev. B (September 1,
2003
All-optical switching and strong coupling using tunable whispering-gallery-mode microresonators
We review our recent work on tunable, ultrahigh quality factor
whispering-gallery-mode bottle microresonators and highlight their applications
in nonlinear optics and in quantum optics experiments. Our resonators combine
ultra-high quality factors of up to Q = 3.6 \times 10^8, a small mode volume,
and near-lossless fiber coupling, with a simple and customizable mode structure
enabling full tunability. We study, theoretically and experimentally, nonlinear
all-optical switching via the Kerr effect when the resonator is operated in an
add-drop configuration. This allows us to optically route a single-wavelength
cw optical signal between two fiber ports with high efficiency. Finally, we
report on progress towards strong coupling of single rubidium atoms to an
ultra-high Q mode of an actively stabilized bottle microresonator.Comment: 20 pages, 24 figures. Accepted for publication in Applied Physics B.
Changes according to referee suggestions: minor corrections to some figures
and captions, clarification of some points in the text, added references,
added new paragraph with results on atom-resonator interactio
Spin dynamics of stripes
The spin dynamics of stripes in high-temperature superconductors and related
compounds is studied in the framework of a spin-wave theory for a simple
spin-only model. The magnon dispersion relation and the magnetic structure
factor are calculated for diagonal and vertical stripes. Acoustical as well as
optical bands are included in the analysis. The incommensurability and the
resonance appear as complementary features of the band structure at
different energy scales. The dependence of spin-wave velocities and resonance
frequencies on the stripe spacing and coupling is calculated. At low doping,
the resonance frequency is found to scale roughly inversely proportional to the
stripe spacing. The favorable comparison of the results with experimental data
suggests that the spin-only model provides a suitable and simple basis for
calculating and understanding the spin dynamics of stripes.Comment: 11 page, 10 figures, pdf version with high-res.pics at
http://www.thp.uni-koeln.de/~sts
Spectral and transport properties of doped Mott-Hubbard systems with incommensurate magnetic order
We present spectral and optical properties of the Hubbard model on a
two-dimensional square lattice using a generalization of dynamical mean-field
theory to magnetic states in finite dimension. The self-energy includes the
effect of spin fluctuations and screening of the Coulomb interaction due to
particle-particle scattering. At half-filling the quasiparticles reduce the
width of the Mott-Hubbard `gap' and have dispersions and spectral weights that
agree remarkably well with quantum Monte Carlo and exact diagonalization
calculations. Away from half-filling we consider incommensurate magnetic order
with a varying local spin direction, and derive the photoemission and optical
spectra. The incommensurate magnetic order leads to a pseudogap which opens at
the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle
states survive in the doped systems, but their dispersion is modified with the
doping and a rigid band picture does not apply. Spectral weight in the optical
conductivity is transferred to lower energies and the Drude weight increases
linearly with increasing doping. We show that incommensurate magnetic order
leads also to mid-gap states in the optical spectra and to decreased scattering
rates in the transport processes, in qualitative agreement with the
experimental observations in doped systems. The gradual disappearence of the
spiral magnetic order and the vanishing pseudogap with increasing temperature
is found to be responsible for the linear resistivity. We discuss the possible
reasons why these results may only partially explain the features observed in
the optical spectra of high temperature superconductors.Comment: 22 pages, 18 figure
Directed flow in Au+Au, Xe+CsI and Ni+Ni collisions and the nuclear equation of state
We present new experimental data on directed flow in collisions of Au+Au,
Xe+CsI and Ni+Ni at incident energies from 90 to 400A MeV. We study the
centrality and system dependence of integral and differential directed flow for
particles selected according to charge. All the features of the experimental
data are compared with Isospin Quantum Molecular Dynamics (IQMD) model
calculations in an attempt to extract information about the nuclear matter
equation of state (EoS). We show that the combination of rapidity and
transverse momentum analysis of directed flow allow to disentangle various
parametrizations in the model. At 400A MeV, a soft EoS with momentum dependent
interactions is best suited to explain the experimental data in Au+Au and
Xe+CsI, but in case of Ni+Ni the model underpredicts flow for any EoS. At 90A
MeV incident beam energy, none of the IQMD parametrizations studied here is
able to consistently explain the experimental data.Comment: RevTeX, 20 pages, 30 eps figures, accepted for publication in Phys.
Rev. C. Data files available at http://www.gsi.de/~fopiwww/pub
Pharmacology and Surface Electrostatics of the K Channel Outer Pore Vestibule
In spite of a generally well-conserved outer vestibule and pore structure, there is considerable diversity in the pharmacology of K channels. We have investigated the role of specific outer vestibule charged residues in the pharmacology of K channels using tetraethylammonium (TEA) and a trivalent TEA analog, gallamine. Similar to Shaker K channels, gallamine block of Kv3.1 channels was more sensitive to solution ionic strength than was TEA block, a result consistent with a contribution from an electrostatic potential near the blocking site. In contrast, TEA block of another type of K channel (Kv2.1) was insensitive to solution ionic strength and these channels were resistant to block by gallamine. Neutralizing either of two lysine residues in the outer vestibule of these Kv2.1 channels conferred ionic strength sensitivity to TEA block. Kv2.1 channels with both lysines neutralized were sensitive to block by gallamine, and the ionic strength dependence of this block was greater than that for TEA. These results demonstrate that Kv3.1 (like Shaker) channels contain negatively charged residues in the outer vestibule of the pore that influence quaternary ammonium pharmacology. The presence of specific lysine residues in wild-type Kv2.1 channels produces an outer vestibule with little or no net charge, with important consequences for quaternary ammonium block. Neutralizing these key lysines results in a negatively charged vestibule with pharmacological properties approaching those of other types of K channels
First Measurement of Z/gamma* Production in Compton Scattering of Quasi-real Photons
We report the first observation of Z/gamma* production in Compton scattering
of quasi-real photons. This is a subprocess of the reaction e+e- to
e+e-Z/gamma*, where one of the final state electrons is undetected.
Approximately 55 pb-1 of data collected in the year 1997 at an e+e-
centre-of-mass energy of 183 GeV with the OPAL detector at LEP have been
analysed. The Z/gamma* from Compton scattering has been detected in the
hadronic decay channel. Within well defined kinematic bounds, we measure the
product of cross-section and Z/gamma* branching ratio to hadrons to be
(0.9+-0.3+-0.1) pb for events with a hadronic mass larger than 60 GeV,
dominated by (e)eZ production. In the hadronic mass region between 5 GeV and 60
GeV, dominated by (e)egamma* production, this product is found to be
(4.1+-1.6+-0.6) pb. Our results agree with the predictions of two Monte Carlo
event generators, grc4f and PYTHIA.Comment: 18 pages, LaTeX, 5 eps figures included, submitted to Physics Letters
- …