27 research outputs found

    Hydrogen peroxide in breath condensate during a common cold.

    Get PDF
    BACKGROUND: Hydrogen peroxide (H2O2) in exhaled air condensate is elevated in inflammatory disorders of the lower respiratory tract. It is unknown whether viral colds contribute to exhaled H2O2. AIM: To assess exhaled H2O2 during and after a common cold. METHODS: We examined H2O2 in the breath condensate of 20 normal subjects with acute symptoms of a common cold and after recovery 2 weeks later and, similarly, in 10 subjects without infection. H2O2 was measured with a fluorimetric assay. RESULTS: At the time of infection exhaled H2O2 (median, ranges) was 0.20 microM (0.03-1.2 microM), and this decreased to 0.09 microM (< 0.01-0.40 microM) after recovery (p = 0.006). There was no significant difference in lung function (forced vital capacity and forced expiratory volume in 1 sec) during and after colds. In the controls, exhaled H2O2 did not change over a 2-week period. CONCLUSIONS: H2O2 in exhaled air condensate is elevated during a common cold, and returns to normal within 2 weeks of recovery in healthy subjects. Hence, symptomatic upper respiratory tract infection may act as a confounder in studies of H2O2 as a marker of chronic lower airway inflammation

    Development and Function of Immune Cells in an Adolescent Patient with a Deficiency in the Interleukin-10 Receptor

    Get PDF
    OBJECTIVE:: Monogenic defects in the interleukin-10 (IL-10) pathway are extremely rare and cause infantile-onset inflammatory bowel disease (IBD)-like pathology. Understanding how immune responses are dysregulated in monogenic IBD-like diseases can provide valuable insight in “classical” IBD pathogenesis. Here, we studied long-term immune cell development and function in an adolescent IL-10 receptor (IL10RA)-deficient patient who presented in infancy with severe colitis and fistulizing perianal disease and is currently treated with immune suppressants. METHODS:: Biomaterial was collected from the IL10RA-deficient patient, pediatric IBD patients and healthy controls. The frequency and phenotype of immune cells were determined in peripheral blood and intestinal biopsies by flow cytometry and immunohistochemistry. Functional changes in monocyte-derived dendritic cells and T cells were assessed by in vitro activation assays. RESULTS:: The IL10RA-deficient immune system developed normally with respect to numbers and phenotype of circulating immune cells. Despite normal co-stimulatory molecule expression, bacterial lipopolysaccharide-stimulated monocyte-derived dendritic cells from the IL10RA-deficient patient released increased amounts of TNFα compared to healthy controls. Upon T-cell receptor ligation, IL10RA-deficient peripheral blood mononuclear cells released increased amounts of T cell cytokines IFNγ and IL-17 agreeing with high numbers of T-bet and IL-17 cells in intestinal biopsies taken at disease onset. In vitro, the immunosuppressive drug thalidomide used to treat the patient decreased peripheral blood mononuclear cell-derived TNFα production. CONCLUSIONS:: With time and during immunosuppressive treatment the IL10RA- deficient immune system develops relatively normally. Upon activation, IL-10 is crucial for controlling excessive inflammatory cytokine release by dendritic cells and preventing IFNγ and IL-17-mediated T-cell responses

    Controlled low flow off line sampling of exhaled nitric oxide in children

    No full text
    BACKGROUND—The aim of this study was to validate exhaled nitric oxide (eNO) values obtained with an alternative off line, single breath, low flow balloon sampling method against on line sampling according to ERS and ATS guidelines in children who could perform both methods.
METHODS—One hundred and twenty seven white children of median age 14.1 years, all pupils of a secondary school, participated in the study. They performed the two different sampling techniques at three different flows of 50, 100, 150 ml/s. Additional measurements were done in random subgroups to determine the influence of the dead space air on eNO values obtained off line by excluding the first 220 ml of exhaled air. All children completed a questionnaire on respiratory and allergic disorders and underwent spirometric tests.
RESULTS—The off line eNO values were significantly higher than the on line values at all flows. At 50 ml/s the geometric mean (SE) off line eNO was 18.7 (1.1) ppb and the on line eNO was 15.1 (1.1) ppb (p<0.0001). However, when dead space air was discarded, off line and on line values were similar: at 50 ml/s off line eNO was 17.7 (1.0) ppb and on line eNO 16.0 (1.2) ppb. There was a good agreement between off line eNO values without dead space air and on line eNO: for 50 ml/s the mean on/off line ratio was 0.95 (95% agreement limits 0.63 to 1.27). The off line eNO level at 50 ml/s in 80 children with negative questionnaires for asthma, rhinitis, and eczema was 13.6 (1.0) ppb compared with 33.3 (1.1) ppb in the remaining children with positive questionnaires on asthma and allergy and/or recent symptoms of cold (p<0.0001).
CONCLUSIONS—In children, off line assessment of eNO using constant low flow sampling and excluding dead space air is feasible and produces similar results as on line assessment with the same exhalation flow rate. Both sampling methods are sufficiently sensitive to differentiate between groups of otherwise healthy school children with and without self-reported asthma, allergy, and/or colds. We propose that, for off line sampling, similar low flow rates should be used as are recommended for on line measurements.


    Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step

    No full text
    Elevated levels of prostaglandins (PGs), products of cyclooxygenases (COXs), are found in the plasma and stool of rotavirus-infected children. We sought to determine the role of COXs, PGs, and the signal transduction pathways involved in rotavirus infection to elucidate possible new targets for antiviral therapy. Human intestinal Caco-2 cells were infected with human rotavirus Wa or simian rotavirus SA-11. COX-2 mRNA expression and secreted PGE(2) levels were determined at different time points postinfection, and the effect of COX inhibitors on rotavirus infection was studied by an immunofluorescence assay (IFA). To reveal the signal transduction pathways involved, the effect of MEK, protein kinase A (PKA), p38 mitogen-activated protein kinase (MAPK), and NF-κB inhibitors on rotavirus infection was analyzed. In infected Caco-2 cells, increased COX-2 mRNA expression and secreted PGE(2) levels were detected. Indomethacin (inhibiting both COX-1 and COX-2) and specific COX-1 and COX-2 inhibitors reduced rotavirus infection by 85 and 50%, respectively, as measured by an IFA. Indomethacin reduced virus infection at a postbinding step early in the infection cycle, inhibiting virus protein synthesis. Indomethacin did not seem to affect viral RNA synthesis. Inhibitors of MEK, PKA, p38 MAPK, and NF-κB decreased rotavirus infection by at least 40%. PGE(2) counteracted the effect of the COX and PKA inhibitors but not of the MEK, p38 MAPK, and NF-κB inhibitors. Conclusively, COXs and PGE(2) are important mediators of rotavirus infection at a postbinding step. The ERK1/2 pathway mediated by PKA is involved in COX induction by rotavirus infection. MAPK and NF-κB pathways are involved in rotavirus infection but in a PGE(2)-independent manner. This report offers new perspectives in the search for therapeutic agents in treatment of severe rotavirus-mediated diarrhea in children

    Electrical field stimulation causes oxidation of exogenous histamine in Krebs-Henseleit buffer:A potential source of error in studies of isolated airways

    No full text
    Electric field stimulation (EFS) relaxes human histamine-precontracted airways in vitro. This relaxation is only partly neurally mediated. Nonneural relaxation has been also shown in blood vessels and is due to the generation of oxygen radicals by EFS. In isolated airways the origin of the nonneural component of the relaxation is not clear. Because exogenous catecholamines are oxidized during EPS of carbogenated Krebs-Henseleit (K-H) buffer, we questioned whether this is also the case for exogenous histamine. Human airways precontracted with histamine or methacholine were exposed to either EFS-stimulated carbogenated K-H buffer that also contained histamine or methacholine or unstimulated buffer. Airways exposed to EFS-stimulated buffer that contained histamine relaxed, whereas airways exposed to buffer containing methacholine or exposed to unstimulated buffer did not. It appeared that the histamine concentrations in the organ baths decreased during 30 min of EFS. This decrease was significantly reduced in the presence of ascorbic acid. We conclude that EFS causes oxidation of histamine in carbogenated K-H buffer, and this may at least partly explain the nonneural component of EFS-induced relaxations of precontracted human isolated airways. Therefore, histamine should not be used to induce precontraction in EFS experiments.</p

    Macrophage-mediated gliadin degradation and concomitant IL-27 production drive IL-10- and IFN-γ 3-secreting Tr1-like-cell differentiation in a murine model for gluten tolerance

    No full text
    Celiac disease is caused by inflammatory T-cell responses against the insoluble dietary protein gliadin. We have shown that, in humanized mice, oral tolerance to deamidated chymotrypsin-digested gliadin (CT-TG2-gliadin) is driven by tolerogenic interferon (IFN)-γ 3- and interleukin (IL)-10-secreting type 1 regulatory T-like cells (Tr1-like cells) generated in the spleen but not in the mesenteric lymph nodes. We aimed to uncover the mechanisms underlying gliadin-specific Tr1-like-cell differentiation and hypothesized that proteolytic gliadin degradation by splenic macrophages is a decisive step in this process. In vivo depletion of macrophages caused reduced differentiation of splenic IFN-γ 3- and IL-10-producing Tr1-like cells after CT-TG2-gliadin but not gliadin peptide feed. Splenic macrophages, rather than dendritic cells, constitutively expressed increased mRNA levels of the endopeptidase Cathepsin D; macrophage depletion significantly reduced splenic Cathepsin D expression in vivo and Cathepsin D efficiently degraded recombinant γ 3-gliadin in vitro. In response to CT-TG2-gliadin uptake, macrophages enhanced the expression of Il27p28, a cytokine that favored differentiation of gliadin-specific Tr1-like cells in vitro, and was previously reported to increase Cathepsin D activity. Conversely, IL-27 neutralization in vivo inhibited splenic IFN-γ 3- and IL-10-secreting Tr1-like-cell differentiation after CT-TG2-gliadin feed. Our data infer that endopeptidase mediated gliadin degradation by macrophages and concomitant IL-27 production drive differentiation of splenic gliadin-specific Tr1-like cells
    corecore