10,701 research outputs found

    Minimal Models for Axion and Neutrino

    Get PDF
    The PQ mechanism resolving the strong CP problem and the seesaw mechanism explaining the smallness of neutrino masses may be related in a way that the PQ symmetry breaking scale and the seesaw scale arise from a common origin. Depending on how the PQ symmetry and the seesaw mechanism are realized, one has different predictions on the color and electromagnetic anomalies which could be tested in the future axion dark matter search experiments. Motivated by this, we construct various PQ seesaw models which are minimally extended from the (non-) supersymmetric Standard Model and thus set up different benchmark points on the axion-photon-photon coupling in comparison with the standard KSVZ and DFSZ models.Comment: 12 pages and 2 figures, references added, matched with the published version in PL

    The influence of non-neuronal cells on catecholamine and acetylcholine synthesis and accumulation in cultures of dissociated sympathetic neurons

    Get PDF
    The effects of several non-neuronal cell types on neurotransmitter synthesis in cultures of dissociated sympathetic neurons from the new-born rat were studied. Acetylcholine synthesis from radioactive choline was increased 100- to 1000-fold in the presence of non-neuronal cells from sympathetic ganglia. This increase was roughly dependent on the number of ganglionic non-neuronal cells present. The effect did not appear to be due to an increased plating efficiency of neurons, since the non-neuronal cells were capable of increasing acetylcholine synthesis after only 48-hr contact with neurons that had been previously grown without non-neuronal cells for 2 weeks. C6 rat glioma cells were also able to stimulate acetylcholine synthesis, but 3T3 mouse fibroblast cells had little or no effect. None of the non-neuronal cell types synthesized detectable acetylcholine in the absence of the neurons. The ganglionic non-neuronal cells had no significant effect on catecholamine synthesis (which occurs in the absence of non-neuronal cells)

    New transformation of Wigner operator in phase space quantum mechanics for the two-mode entangled case

    Full text link
    As a natural extension of Fan's paper (arXiv: 0903.1769vl [quant-ph]) by employing the formula of operators' Weyl ordering expansion and the bipartite entangled state representation we find new two-fold complex integration transformation about the Wigner operator (in its entangled form) in phase space quantum mechanics and its inverse transformation. In this way, some operator ordering problems can be solved and the contents of phase space quantum mechanics can be enriched.Comment: 8 pages, 0 figure

    Preliminary Studies on the Use of Monoclonal Antibodies as Probes for Sympathetic Development

    Get PDF
    The precise structural organization and proper functioning of the adult nervous system depend on the ability of neurones to make highly ordered synaptic connexions. To define molecules involved in the development of these connexions and to study their functional roles, we use primary cultures of dissociated rat sympathetic neurones grown in the virtual absence of non-neuronal cells. These neurones can develop adrenergic or cholinergic properties, depending on the environment in which they are grown. This ability to manipulate neuronal phenotype is being used in an attempt to identify cell surface macromolecules that are important in the development or function of adrenergic and cholinergic properties. We have produced monoclonal antibodies against the surface membranes of these neurones and are in the process of characterizing them. Results are presented on the binding specificity of one of these antibodies and on the effect of two other antibodies on neurotransmitter synthesis, uptake, and release

    Fresnel operator, squeezed state and Wigner function for Caldirola-Kanai Hamiltonian

    Full text link
    Based on the technique of integration within an ordered product (IWOP) of operators we introduce the Fresnel operator for converting Caldirola-Kanai Hamiltonian into time-independent harmonic oscillator Hamiltonian. The Fresnel operator with the parameters A,B,C,D corresponds to classical optical Fresnel transformation, these parameters are the solution to a set of partial differential equations set up in the above mentioned converting process. In this way the exact wavefunction solution of the Schr\"odinger equation governed by the Caldirola-Kanai Hamiltonian is obtained, which represents a squeezed number state. The corresponding Wigner function is derived by virtue of the Weyl ordered form of the Wigner operator and the order-invariance of Weyl ordered operators under similar transformations. The method used here can be suitable for solving Schr\"odinger equation of other time-dependent oscillators.Comment: 6 pages, 2 figure

    Physical mechanism of superluminal traversal time: interference between multiple finite wave packets

    Get PDF
    The mechanism of superluminal traversal time through a potential well or potential barrier is investigated from the viewpoint of interference between multiple finite wave packets, due to the multiple reflections inside the well or barrier. In the case of potential-well traveling that is classically allowed, each of the successively transmitted constituents is delayed by a subluminal time. When the thickness of the well is much smaller in comparision with a characteristic length of the incident wave packet, the reshaped wave packet in transmission maintains the profile of the incident wave packet. In the case of potential-barrier tunneling that is classically forbidden, though each of the successively transmitted constituents is delayed by a time that is independent of the barrier thickness, the interference between multiple transmitted constituents explains the barrier-thickness dependence of the traversal time for thin barriers and its barrier-thickness independence for thick barriers. This manifests the nature of Hartman effect.Comment: 9 pages, 3 figures, Some comments and suggestions are appreciate

    Enhancement of the anomalous Hall effect and spin glass behavior in the bilayered manganite La(2-2x)Sr(1+2x)Mn2O7

    Full text link
    The Hall resistivity and magnetization have been investigated in the ferromagnetic state of the bilayered manganite La(2-2x)Sr(1+2x)Mn2O7 (x=0.36). The Hall resistivity shows an increase in both the ordinary and anomalous Hall coefficients at low temperatures below 50K, a region in which experimental evidence for the spin glass state has been found in a low magnetic field of 1mT. The origin of the anomalous behavior of the Hall resistivity relevant to magnetic states may lie in the intrinsic microscopic inhomogeneity in a quasi-two-dimensional electron system.Comment: 7 pages, 4 figures, Solid State Communications (in press
    • …
    corecore