17,517 research outputs found

    Entangled coherent states versus entangled photon pairs for practical quantum information processing

    Full text link
    We compare effects of decoherence and detection inefficiency on entangled coherent states (ECSs) and entangled photon pairs (EPPs), both of which are known to be particularly useful for quantum information processing (QIP). When decoherence effects caused by photon losses are heavy, the ECSs outperform the EPPs as quantum channels for teleportation both in fidelities and in success probabilities. On the other hand, when inefficient detectors are used, the teleportation scheme using the ECSs suffers undetected errors that result in the degradation of fidelity, while this is not the case for the teleportation scheme using the EPPs. Our study reveals the merits and demerits of the two types of entangled states in realizing practical QIP under realistic conditions.Comment: 9 pages, 6 figures, substantially revised version, to be published in Phys. Rev.

    Violation of Bell's inequality using classical measurements and non-linear local operations

    Get PDF
    We find that Bell's inequality can be significantly violated (up to Tsirelson's bound) with two-mode entangled coherent states using only homodyne measurements. This requires Kerr nonlinear interactions for local operations on the entangled coherent states. Our example is a demonstration of Bell-inequality violations using classical measurements. We conclude that entangled coherent states with coherent amplitudes as small as 0.842 are sufficient to produce such violations.Comment: 6 pages, 5 figures, to be published in Phys. Rev.

    Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits

    Get PDF
    We propose a scheme to realize deterministic quantum teleportation using linear optics and hybrid qubits. It enables one to efficiently perform teleportation and universal linear-optical gate operations in a simple and near-deterministic manner using all-optical hybrid entanglement as off-line resources. Our analysis shows that our new approach can outperforms major previous ones when considering both the resource requirements and fault tolerance limits.Comment: 10 pages, 5 figures; extended version, title, abstract and figures changed, details added, to be published in Phys. Rev.

    Quantum Nonlocality for a Mixed Entangled Coherent State

    Get PDF
    Quantum nonlocality is tested for an entangled coherent state, interacting with a dissipative environment. A pure entangled coherent state violates Bell's inequality regardless of its coherent amplitude. The higher the initial nonlocality, the more rapidly quantum nonlocality is lost. The entangled coherent state can also be investigated in the framework of 2×22\times2 Hilbert space. The quantum nonlocality persists longer in 2×22\times2 Hilbert space. When it decoheres it is found that the entangled coherent state fails the nonlocality test, which contrasts with the fact that the decohered entangled state is always entangled.Comment: 20 pages, 7 figures. To be published in J. Mod. Op

    GHZ-type and W-type entangled coherent states: generation and Bell-type inequality tests without photon counting

    Get PDF
    We study GHZ-type and W-type three-mode entangled coherent states. Both the types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions, i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.Comment: 8 pages, 5 figures, to be published in Phys. Rev.

    Production of superpositions of coherent states in traveling optical fields with inefficient photon detection

    Get PDF
    We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It non-deterministically distills coherent state superpositions (CSSs) with large amplitudes out of CSSs with small amplitudes using inefficient photon detection. The small CSSs required to produce CSSs with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single photon sources and boosts negativity of Wigner functions of quantum states.Comment: 13 pages, 9 figures, to be published in Phys. Rev.

    Quantification of Macroscopic Quantum Superpositions within Phase Space

    Full text link
    Based on phase-space structures of quantum states, we propose a novel measure to quantify macroscopic quantum superpositions. Our measure simultaneously quantifies two different kinds of essential information for a given quantum state in a harmonious manner: the degree of quantum coherence and the effective size of the physical system that involves the superposition. It enjoys remarkably good analytical and algebraic properties. It turns out to be the most general and inclusive measure ever proposed that it can be applied to any types of multipartite states and mixed states represented in phase space.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Applicability valuation for evaluation of surface deflection in automotive outer panels

    Get PDF
    Upon unloading in a forming process there is elastic recovery, which is the release of the elastic strains and the redistribution of the residual stresses through the thickness direction, thus producing surface deflection. It causes changes in shape and dimensions that can create major problem in the external appearance of outer panels. Thus surface deflection prediction is an important issue in sheet metal forming industry. Many factors could affect surface deflection in the process, such as material variations in mechanical properties, sheet thickness, tool geometry, processing parameters and lubricant condition. The shape and dimension problem in press forming is defined as a trouble mainly caused by the elastic recovery of materials during the forming. The use of high strength steel sheets in the manufacturing of automobile outer panels has increased in the automotive industry over the years because of its lightweight and fuel-efficient improvement. But one of the major concerns of stamping is surface deflection in the formed outer panels. Hence, to be cost effective, accurate prediction must be made of its formability. The automotive industry places rigi

    A key to room-temperature ferromagnetism in Fe-doped ZnO: Cu

    Full text link
    Successful synthesis of room-temperature ferromagnetic semiconductors, Zn1x_{1-x}Fex_{x}O, is reported. The essential ingredient in achieving room-temperature ferromagnetism in bulk Zn1x_{1-x}Fex_{x}O was found to be additional Cu doping. A transition temperature as high as 550 K was obtained in Zn0.94_{0.94}Fe0.05_{0.05}Cu0.01_{0.01}O; the saturation magnetization at room temperature reached a value of 0.75μB0.75 \mu_{\rm B} per Fe. Large magnetoresistance was also observed below 100100 K.Comment: 11 pages, 4 figures; to appear in Appl. Phys. Let
    corecore