26 research outputs found

    Morphology of the petrosal and stapes of Borealestes (Mammaliaformes, Docodonta) from the Middle Jurassic of Skye, Scotland

    Get PDF
    We describe, in unprecedented detail, the petros-als and stapes of the docodont Borealestes from the Middle Jurassic of Scotland, using high resolution lCT and phase- contrast synchrotron imaging. We describe the inner ear endocast and the vascularized interior structure of the pet-rosal, and provide the first endocranial view of a docodontan petrosal. Our study confirms some similarities in petrosal and stapedial morphology with the better known Haldan-odon of the Late Jurassic of Portugal, including: (1) the degree of curvature of the cochlea; (2) multiple features related to the highly pneumatized paroccipital region; (3) the shape of lateral trough, the fossa of the M. tensor tym-pani, and the ridge on the promontorium; (4) the round shape of the fenestra vestibuli; and (5) overall morphology of the stapes. But Borealestes differs from Haldanodon in having a bony ridge that separates the tympanic opening of the prootic canal, the secondary facial foramen and the hia-tus Fallopii, from the fenestra vestibuli. We identify two new vascular structures: the anterior and posterior trans-cochlear sinuses, which traverse the pars cochlearis around the cochlear nerve (VIII). These trans-cochlear sinuses have not been observed in previous docodont specimens, and could be an autapomorphy of Borealestes, or apomorphic for this clade. We also establish the anatomical relationship of the circum-promontorium plexus to the inner endocast. The high quality of our scans has made these structures visible for the first time

    The mandible and dentition of Borealestes serendipitus (Docodonta) from the Middle Jurassic of Skye, Scotland

    Get PDF
    The Middle Jurassic docodont Borealestes serendipitus was the first Mesozoic mammal found in Scotland over 40 years ago. Its affinities and morphology have remained poorly understood. Although multiple dentary fragments and isolated teeth have been recovered from Scotland and England, they have not yet been described in sufficient detail. We report new, more complete specimens collected during recent field work on Skye, Scotland, combined with previously collected material. This includes upper and lower dentition and an almost complete right dentary. We present an updated description and diagnosis of the genus Borealestes, based on high-resolution micro-computed tomography (micro-CT) and synchrotron scans. We identify seven key features that distinguish Borealestes from other docodonts, including a pronounced a–c crest, absence of the a–g crest on cusp a, an anterior fovea at the buccolingual midpoint of the upper molar, and the convergence of the Meckel’s groove with the ventral margin of the mandible. We also present a revised diagnosis for the second species, B. mussettae. Our phylogenetic analysis supports a clade formed by Borealestes, Haldanodon, Docofossor, and Docodon. Ontogenetic variation in the mandibular morphology of Borealestes is similar to that seen in Docodon and Haldanodon, with the delayed emergence of the ultimate lower molar, the shift of the last molar to the front of the coronoid process, and a posterior shift of the Meckel’s sulcus in successively older individuals. This supports a distinctive growth pattern in the clade including Borealestes and Docodon, one that may be present in Docodonta as a whole

    A new docodont mammal from the Late Jurassic of the Junggar Basin in Northwest China

    No full text
    Fieldwork in the early Late Jurassic (Oxfordian) Qigu Formation of the Junggar Basin in Northwest China (Xinjiang Autonomous Region) produced teeth and mandibular fragments of a new docodont. The new taxon has a large “pseudotalonid” on the lower molars, and by retention of crest b−g exhibits closer affinities to Simpsonodon and Krusatodon from the Middle Jurassic of Europe than to the other known Asian docodonts Tashkumyrodon, Tegotherium, and Sibirotherium. It differs from the Haldanodon–Docodon−lineage by the “pseudotalonid” and large cusps b and g. A PAUP analysis based on lower molar characters produced a single most parsimonious tree with two main clades. One clade comprises Docodon, Haldanodon, and Borealestes, and the other Dsungarodon, Simpsonodon, and Krusatodon plus the Asian tegotheriids. Analysis of the molar occlusal relationships using epoxy casts mounted on a micromanipulator revealed a four−phase chewing cycle with transverse component. The molars of the new docodont exhibit a well developed grinding function besides cutting and shearing, probably indicating an omnivorous or even herbivorous diet. A grinding and crushing function is also present in the molars of Simpsonodon, Krusatodon, and the Asian tegotheriids, whereas Borealestes, Haldanodon, and Docodon retain the plesiomorphic molar pattern with mainly piercing and cutting function

    Teeth of Past and Present Elephants: Microstructure and Composition of Enamel in Fossilized Proboscidean Molars and Implications for Diagenesis

    No full text
    Abstract Enamel as hardest biological tissue remains unaltered for millions of years and is therefore an excellent archive for studies on paleodiet, paleoecology, paleoclimate, paleoenvironment, biomechanical, and evolutionary studies. However, diagenetic alterations can influence such interpretations and therefore we analyzed the microstructure and composition (elemental and stable isotopic) of fossil and extant proboscidean teeth to study the extent of diagenesis in them. We report for the first time on the enamel microstructure data of the Indian elephantiformes Anancus, Stegodon, Elephas, and Palaeoloxodon besides analyzing Gomphotherium and Deinotherium from new formations. Furthermore, we compare their microstructure with those of the primitive African taxa of Moeritherium and Palaeomastodon. Our results from depth‐related elemental composition and oxygen isotope ratios of enamel phosphate and carbonate indicate no or only negligible modification. There is also a lack of age‐dependency of these minor alterations within the fossils collected from Siwaliks of the Himalayan Foreland Basin. Overall, our study indicates that diagenesis has not played any significant role on the samples studied here and are therefore well suited for chemical and paleontological studies and proxy for paleoclimate and paleoenvironment reconstruction
    corecore