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Abstract: We describe, in unprecedented detail, the petros-

als and stapes of the docodont Borealestes from the Middle

Jurassic of Scotland, using high resolution lCT and phase-

contrast synchrotron imaging. We describe the inner ear

endocast and the vascularized interior structure of the pet-

rosal, and provide the first endocranial view of a docodontan

petrosal. Our study confirms some similarities in petrosal

and stapedial morphology with the better known Haldan-

odon of the Late Jurassic of Portugal, including: (1) the

degree of curvature of the cochlea; (2) multiple features

related to the highly pneumatized paroccipital region; (3)

the shape of lateral trough, the fossa of the M. tensor tym-

pani, and the ridge on the promontorium; (4) the round

shape of the fenestra vestibuli; and (5) overall morphology

of the stapes. But Borealestes differs from Haldanodon in

having a bony ridge that separates the tympanic opening of

the prootic canal, the secondary facial foramen and the hia-

tus Fallopii, from the fenestra vestibuli. We identify two new

vascular structures: the anterior and posterior trans-cochlear

sinuses, which traverse the pars cochlearis around the

cochlear nerve (VIII). These trans-cochlear sinuses have not

been observed in previous docodont specimens, and could

be an autapomorphy of Borealestes, or apomorphic for this

clade. We also establish the anatomical relationship of the

circum-promontorium plexus to the inner endocast. The

high quality of our scans has made these structures visible

for the first time.

Key words: Borealestes, Mammaliaformes, docodont, pet-

rosal, inner ear, endocast.

DOCODONTA comprise an extinct branch of Mammali-

aformes that falls outside crown Mammalia, but are closer

to crown mammals than Sinoconodon, morganucodontans,

haramiyidans and kuehneotheriids (Wible & Hopson

1993; Luo et al. 2002; Kielan-Jaworowska et al. 2004; Mar-

tin 2005; Luo et al. 2015a). Docodonts retain the ple-

siomorphic association of the postdentary middle ear

elements with the dentary in the postdentary trough (Lille-

graven & Krusat 1991; Kielan-Jaworowska et al. 2004; Ji

et al. 2006; Meng et al. 2015). Docodonts also possess

complex cusps and crests on their molars, creating shear-

ing and crushing surfaces, providing many characters that

distinguish them from most contemporaneous stem mam-

maliaform families (Averianov & Lopatin 2006; Luo &

Martin 2007; Luo et al. 2015b). Their derived molar mor-

phology (Kermack et al. 1987; Sigogneau-Russell 2003;

Meng et al. 2015; Schultz et al. 2017a) and very distinctive

differences in postcranial skeletons are likely to have con-

tributed to their wide ecological diversity during the Juras-

sic (Ji et al. 2006; Luo 2007; Meng et al. 2015).

Recent analyses suggest that docodonts may be closely

related to Woutersia and Delsatia among the stem mam-

maliaforms of the Late Triassic (Sigogneau-Russell &

Hahn 1995; Averianov & Lopatin 2006; Luo & Martin

2007). It was further proposed that docodonts may form

a clade with Tikitherium (Datta 2005), to the exclusion of

other Late Triassic mammaliaforms (Luo & Martin 2007).

Members of Docodonta are found in the Middle Jurassic

Bathonian of the UK and Russia (Waldman & Savage 1972;

Lopatin & Averianov 2005), and from equivalent strati-

graphic levels elsewhere in Eurasia (Ji et al. 2006). During

the Late Jurassic, their distribution further expanded to

North America, encompassing the entire Laurasian land-

mass (Simpson 1929; Krusat 1980; Pfretzschner et al. 2005;

Hu et al. 2007; Martin et al. 2010; Rougier et al. 2015; Luo

et al. 2015b). One taxon extended to the Early Cretaceous

of Russia (Maschenko et al. 2002; Lopatin et al. 2009). The

taxon Gondtherium from Toarcian sediments in India, was

suggested to be docodontan. This would increase the geo-

graphical range of this group (Prasad & Manhas 2001
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2007). However, the docodont affinity of Gondtherium has

been challenged (Averianov et al. 2010).

There were previously five docodonts for which reason-

ably complete cranial material is known: Docodon, Haldan-

odon, Castorocauda, Agilodocodon and Docofossor. Only the

petrosal of Haldanodon has been recovered and described

so far (Lillegraven & Krusat 1991; Ruf et al. 2013). Here we

describe the petrosals of Borealestes, expanding the infor-

mation on the cranial morphology of docodonts.

Borealestes is the oldest docodont for which cranial

material is known, and can thus shed light on the compar-

ative morphology of the petrosal of docodonts as a whole.

We used high-resolution micro-computed tomography

(lCT) and digital reconstruction to explore the petrosal

anatomy, and to generate an endocast of the inner ear of

Borealestes. We compare these with the petrosal and inner

ear of Haldanodon, and other key Mesozoic mammals for

which the petrosals are known. This comparison provides

important new information on the characteristics of the

inner ear of a primitive docodont, and the evolutionary

transformation from the simpler inner ear in early mam-

mals in general (Luo et al. 1995), to the complex inner ear

morphology (including coiled cochlea) of stem therians

and crown Theria (Luo 2001; Ruf et al. 2009, 2013; Luo

et al. 2011; Luo et al. 2016; Schultz et al. 2017b).

GEOLOGICAL SETTING

The left petrosal of Borealestes, specimen NMS

G.1992.47.121.2 is in the collections at the National

Museum of Scotland (NMS) in Edinburgh, Scotland. It is

part of the skeleton of Borealestes NMS G.1992.47.121.1

(which includes the right petrosal) recovered in 1972 by

M. Waldman and R. J. G. Savage from the Jurassic lime-

stone beds near Elgol, Isle of Skye. The exact location

where the skeleton was recovered is yet to be determined

(currently under investigation by EP), but the Kilmaluag

comprises dolomitized blue–grey limestones, interbedded

with calcareous siltstones and shales. Freshwater gas-

tropods, bivalves, and ostracods (Viviparus, Neomidon,

Unio, Darwinula and Theriosynoecum) indicate a freshwa-

ter, lagoonal environment (Andrews 1985; British Geolog-

ical Survey 2011). The skeleton is believed to have come

from ‘the vertebrate beds’, the strata that have yielded

fossil lizards, crocodylomorphs, archosaurs, tritylodontids

and mammals (Waldman & Savage 1972; Evans et al.

2005; Close et al. 2016; Panciroli et al. 2017a, b).

MATERIAL AND METHOD

NMS G.1992.47.121.1 is a fragmentary skeleton to which

the left petrosal NMS G.1992.47.121.2 belongs, but from

which it is now detached. The right petrosal is still part

of the rock block of NMS G.1992.47.121.1. The skeleton

has not yet been described, and is not identified to species

level, but we confirm it belongs to the genus Borealestes

(EP & Z-XL, pers. obs.; currently under study by EP).

The left petrosal, along with several other bone fragments,

was dislodged from the complete skeleton historically

during handling, allowing them to be scanned and

described separately. The right petrosal remained in situ

with the skeleton. Micro-computed tomographic data

(lCT) of NMS G.1992.47.121.2 were obtained using the

lCT scanner built in-house at the University of Edin-

burgh, School of Geosciences Experimental Geoscience

Facility. The scanner comprises a Feinfocus 10–160 kV

dual transmission/reflection source, MICOS UPR-160-

AIR ultra-high precision air-bearing table, Perkin Elmer

XRD0822 amorphous silicon x-ray flat panel detector and

terbium doped gadolinium oxy-sulfide scintillator. The

scan resolution is 8.9 lm. Data acquisition software was

written in-house, and scans were reconstructed using

Octopus 8.7 software (https://octopusimaging.eu/). Phase-

contrast synchrotron data from NMS G.1992.47.121.1

were obtained at the European Synchrotron Radiation

Facility (ESRF), Grenoble, France. This produced data

with a scan resolution of 6.15 lm, which was subse-

quently resampled to 12.3 lm.

These data were then digitally reconstructed and image

processed using Mimics 19.0 at the National Museum of

Scotland (https://www.materialise.com/en/medical/softwa

re/mimics). Digital reconstructions are available in the

Dryad Digital Repository (Panciroli et al. 2018). Raw data

are part of a dataset comprising the fragmentary skeleton

NMS G.1992.47.121.1, currently under study by EP. The

complete raw dataset will be available upon completion

of this work and subsequent publication.

Institutional abbreviation. NMS, National Museums Scotland,

Edinburgh, UK.

RESULTS

Petrosals

NMS G.1992.47.121.2 (Figs 1B–E, 2) is the separated left

petrosal of Borealestes. The lateral trough, the mastoid

region and the associated structures are not preserved in

this petrosal. The pars cochlearis is also incomplete, miss-

ing the anteromedial portion (Figs 1D–E, 2F). Nonethe-
less, the promontorium, or ventral eminence of the pars

cochlearis, is relatively well preserved and shows many

surface features (Fig. 2C–E). The right petrosal (Figs 1F–
G, 3–6) is considerably better preserved in the lateral

trough, the cavum epiptericum, the prootic groove
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structure, and in the paroccipital and mastoid regions. All

of these structures are consistent with those identified in

the petrosals of the docodont Haldanodon (Ruf et al.

2013). In the following, we describe each of the petrosal

structures by referring to both petrosals.

A bony ridge is visible on the anterolateral aspect of

the promontorium (Figs 2E, 5A). This promontorium

ridge is better preserved on the right petrosal than the

left. The main part of the promontorium bulges antero-

medially and ventrally, best shown in the left petrosal

(Fig. 2). On the right petrosal, a piece of promontorium

is broken but has been digitally restored (Fig. 5). The

bone is better preserved in the apical region of the pars

cochlearis of the right petrosal (Fig. 5). However, an area

of the endocranial surface is missing on the internal sur-

face of the anterior pars cochlearis of the right petrosal.

F IG . 1 . Petrosals of the docodont Borealestes. Photos and digital reconstructions from lCT and synchrotron scans. A, approximate

positions of preserved petrosals in schematic skull outline of docodont (simplified from Haldanodon, partly based on Ruf et al. 2013).

B–E, left petrosal NMS G.1992.47.121.2: B, photo of left petrosal in ventral view; C, digital reconstruction in ventral view showing

crushing and dislocated fragments inside petrosal; D, photo of left petrosal in endocranial view; E, digital reconstruction of the

endocranial view showing fragments inside petrosal. F–G, right petrosal NMS G.1992.47.121.1: F, photo of right petrosal in endocranial

view; G, digital reconstruction of right petrosal in endocranial view with main features labelled for orientation. H–I, lCT-scan slices

with main features labelled and approximate position of slice picture shown in inset: H, left petrosal NMS G.1992.47.121.2; I, right

petrosal NMS G.1992.47.121.1. Abbreviations: a, anterior; LSC, lateral semi-circular canal; p, posterior; PSC, posterior semi-circular

canal. Scale bar in 1A represents 5 mm, all other scale bars represent 1 mm (scale bar in B also refers to C–G).
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The entire apical region is broken off on the left (Fig. 2).

These breakages help to expose the tiny foramina of the

circum-promontorium plexus on the interior surface of

the cochlear canal (Figs 2F, 3C).

The crista interfenestralis is present, separating the fen-

estra vestibuli from the perilymphatic foramen and con-

necting the promontorium with the more posteriorly

located mastoid region in complete petrosals, as in other

F IG . 3 . Right petrosal of the docodont Borealestes NMS G.1992.47.121.1. Digital reconstructions from synchrotron scan. A–B, semi-

translucent views of interior structures of the right petrosal in: A, ventral; B, endocranial view; blue = vascular structures; yel-

low = nerves; brown = inner ear endocast. C, major exterior structures preserved on the endocranial aspect of the right petrosal. More

detailed identification shown in stereo paired images in Figure 4. Arrows indicates anterior direction. Abbreviations: a, anterior; p, pos-

terior. Scale bars represent 1 mm.

F IG . 2 . Left petrosal of the docodont Borealestes NMS G.1992.47.121.2. Digital reconstructions from lCT scan. A–B, semi-translucent

views of interior structures of the left petrosal in: A, ventral; B, endocranial view; blue = vascular structures; yellow = nerves;

brown = inner ear endocast. C–F, exterior surface structure with repositioned stapes (lilac), and periphery of fenestra vestibuli and

crista interfenestralis (pink): C, dorso-lateral view (tilted); D, medial view (tilted); E, ventral (external) view; F, dorsal (endocranial)

view. Arrows indicate anterior direction. Abbreviations: a, anterior; p, posterior. All scale bars represent 1 mm.
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Mesozoic mammals (Rougier et al. 1996; Ruf et al. 2009,

2013; Luo et al. 2012). The crista interfenestralis is intact

in the right petrosal (Figs 5A, 6), but on the left petrosal

(Fig. 2) it is fractured and collapsed into the hollowed

inner ear space of the petrosal. Despite this, it can still be

recognized without question, and has been digitally

restored to its original position (Fig. 2C–F).
The left petrosal shows several posterior openings of

the inferior petrosal sinus canal, anteromedial to the peri-

lymphatic sulcus (and also anterior to the jugular notch)

F IG . 4 . Stereo pairs of right petrosal of the docodont Borealestes NMS G.1992.47.121.1. Endocranial view from digital reconstructions

of synchrotron scans. Exterior structures preserved on the endocranial (internal) aspect of the right petrosal. A, dorsal view (stereo

pair). B, dorsolateral view (stereo pair). The petrosal has a major fracture (fault) indicated by dashed-line that cuts through the bone,

along the prootic sinus groove, and then the cavum supracochleare that contained the geniculate ganglion. Further anteriorly, distor-

tion by the same fault compacted the cavum epiptericum for the trigeminal ganglion, compressing this structure into a narrow space.

Arrows indicate anterior direction. Abbreviations: ASC, anterior semi-circular canal; LSC, lateral semi-circular canal; p, posterior; PSC,

posterior semi-circular canal. Scale bar represents 1 mm. Colour online.
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on the posteromedial corner of the promontorium

(Fig. 2). Of these, the first opening is large, and antero-

medially located. This opening is connected to the infe-

rior petrosal sinus, enclosed in a thick bony canal along

the medial edge of the pars cochlearis. This is termed the

opening of the inferior petrosal sinus. A second, smaller

opening is located lateral to the first opening, and this

tiny foramen is also connected to a small tributary chan-

nel networked with the inferior petrosal sinus (Fig. 2).

These surface foramina can be traced to the inferior

F IG . 5 . Right petrosal of the docodont Borealestes NMS G.1992.47.121.1. Digital reconstructions of ventral view from synchrotron

scan. External surface structures with the stapes restored to the fenestra vestibuli, and displaced promonotium fragments repositioned.

A, ventrolateral view; B, ventromedial view. For full structural identifications see Figure 6. The petrosal is associated with a broken

and displaced strip of the squamosal. Arrows indicate anterior direction. Abbreviation: p, posterior. Scale bars represent 1 mm. Colour

online.
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petrosal sinus in the medial (or inferior) part of pars

cochlearis, as in the petrosals of the docodont Haldan-

odon and other Mesozoic mammals (Wible 1990; Rougier

et al. 1992, 1996; Ladev�eze & de Muizon 2007, 2010; Luo

et al. 2012; Ruf et al. 2013). The bony canal of the large

inferior petrosal sinus is only preserved partially on the

F IG . 6 . Stereo pairs of the right petrosal of the docodont Borealestes NMS G.1992.47.121.1. Ventral view from digital reconstructions

from synchrotron scans. Exterior structures preserved on the ventral aspect of the right petrosal. A, ventrolateral view (stereo pair); B,

ventral view (stereo pair). The petrosal has a major fracture (fault) indicated by dashed-line that cuts through the bone along the

prootic groove and its canal, and then through the cavum supracochleare that contained the geniculate ganglion. This has distorted

the cavum supracochleare and dislocated the opening of the secondary facial foramen. Further anteriorly the same fault compacted the

cavum epiptericum for the trigeminal ganglion, and compressed this structure. The lateral flange of the petrosal is broken, and only

shown in its remaining and broken edge. The associated and incomplete strip of squamosal is displaced. A piece of petrosal anterior

lamina, and the broken piece of the promontorium are omitted from these renderings. The solid lines with arrows indicate the inter-

preted courses of superior ramus of stapedial artery (via pterygo-paroccipital foramen), the arteria diploetica magna (via the post-tem-

poral canal) and the ascending vessel of temporal region from the confluence of these two vessels. Arrows indicate anterior direction.

Abbreviation: p, posterior. Scale bar represents 1 mm. Colour online.
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left petrosal, and both its anterior part (near the apex of

pars cochlearis) and its posterior section are broken

(Fig. 2). The broken posterior part of the inferior petrosal

sinus canal is connected to a trans-cochlear sinus channel

(described below). Of the three openings connected to

inferior petrosal sinus, the posterior-most opening is also

the opening of the posterior trans-cochlear sinus. The

interpretation of how the inferior petrosal sinus is con-

nected to the trans-cochlear sinus channel is based on the

left petrosal, as the medial edge of the pars cochlearis

where the inferior petrosal sinus would be located has

been eroded in the right petrosal.

In both the left and right petrosals, we have visualized

and identified two vascular channels that traverse the pars

cochlearis through the bone, respectively called the ant-

erior trans-cochlear sinus, and the posterior trans-

cochlear sinus (Figs 2, 3, 7). The anterior trans-cochlear

sinus channel is confluent with the posterior end of the

inferior petrosal sinus (Figs 2A, B), but the posterior

trans-cochlear sinus has its own opening on the postero-

medial corner of the promontorium (Figs 2A, D–E). In
the right petrosal, because the media edge containing the

canal of the inferior petrosal sinus has been eroded and

lost, the two openings of the anterior trans-cochlear sinus

and the posterior trans-cochlear sinus appear well sepa-

rated (Fig. 3).

The bony floor of the lateral trough is only partly

preserved in the left petrosal (NMS G.1992.47.121.2) but

is more complete in the right petrosal (NMS

G.1992.47.121.1). The lateral flange is preserved as a bro-

ken edge on the right petrosal, and is altogether lost in

the left petrosal (Figs 2, 5, 6). The following structures

can be identified in the posterior part of lateral trough:

the hiatus Fallopii for the greater petrosal nerve; the sec-

ondary facial nerve foramen (on the lateral wall of cavum

supracochleare); and a large opening for the confluent

prootic canal and the tympanic opening of the posterior

trans-cochlear sinus channel (Figs 2, 3). We also interpret

a shallow depression area anterior to the fenestra vesti-

bule, and near the opening of the hiatus Fallopii, as the

fossa for the tensor tympani along the posterior rim of

the lateral trough. The depression we have interpreted as

the tensor tympani fossa is similar in location to the ten-

sor tympani fossa identified in the petrosals of Cretaceous

multituberculates, and in the Cretaceous triconodontid

from the Cloverly Formation (Wible & Hopson 1993, fig.

5.3; see also Wible & Hopson 1995, figs 7, 8). Postero-

medially, a bony ridge separates the prootic canal, sec-

ondary facial foramen and hiatus Fallopii from the

fenestra vestibuli, forming part of the latter’s anterior

rim. The secondary facial foramen is anterior to the pro-

otic canal opening.

The crista interfenestralis is crushed and displaced dor-

sally in the left petrosal NMS G.1992.47.121.2, distorting

the original shape and proportions of the fenestra vesti-

buli and the perilymphatic foramen (Figs 1C, 2E).

Although the crista interfenestralis is better preserved in

the right petrosal, the promontorial roof in this region is

broken. The lateral periphery of the fenestra vestibuli is

also broken. The preservational defects have distorted the

shape of the fenestra vestibuli. The preserved shape of

stapedial foot plate (described below) can give a reliable

approximation to the shape of the fenestra vestibuli. We

digitally repositioned the fragments of the crista interfen-

estralis of specimen NMS G.1992.47.121.2, to partially

restore the periphery of the fenestra vestibuli. Based on

the restoration, we interpret the fenestra vestibuli as being

more or less round in circumference, as reflected in the

shape of the stapedial footplate (Figs 2, 5, 8). Both the

fenestra vestibuli and the perilymphatic foramen are large,

relative to the size of the promontorium. The fenestra

vestibuli is positioned posterolaterally to the promonto-

rium, and the perilymphatic foramen is posterior to the

promontorium.

A perilymphatic sulcus for the perilymphatic duct

(aquaeductus cochleae) is present in both petrosals. This

sulcus connects the perilymphatic foramen and the mar-

gin of the jugular foramen (Figs 2E, 5, 6). This is similar

to other stem mammals and several Mesozoic clades of

crown mammals (Kermack et al. 1981; Crompton & Luo

1993; Wible & Hopson 1993; Lillegraven & Hahn 1993;

Wible & Hopson 1995; Rougier et al. 1996; Luo et al.

2001). The jugular foramen is only represented by its

margin on the petrosal; the medial periphery of this fora-

men is not preserved in this specimen.

In the endocranial aspect of the digital reconstruc-

tion, the osseous cochlear canal is visible in both pet-

rosals because the anterior part of the pars cochlearis is

broken, although less severely in the right, than in the

left petrosal (Figs 1D–G, 2, 3). Minute foramina for

blood vessels and sinuses are visible on the interior sur-

face of the cochlear canal (Figs 2F, 3C), which we inter-

pret to be connected to the circum-promontorium sinus

plexus (sensu Kermack et al. 1981) inside the bone cov-

ering the pars cochlearis (visible in the endocast, see

endocast section below). We can trace this network of

small vessels (Figs 2A; 7A, B, E, F). Additional small

nutritive foramina connected to these small vessels are

also visible on the endocranial surface of the petrosal

(Fig. 2F).

The internal auditory meatus is well preserved in both

petrosals. The primary foramen for the facial nerve (VII)

to enter the internal auditory meatus can clearly be iden-

tified, and can be traced to the incomplete cavum supra-

cochleare that houses the geniculate ganglion (Figs 2F,

3C, 4) (Rougier et al. 1992, 1996; Ruf et al. 2013). The

foramen for the cochlear nerve (VIII), and laterally to

that the foramen for the vestibular nerve (VIII), are

PANCIROL I ET AL . : PETROSAL AND STAPES OF BOREALESTES 9
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present. This structure is only partly preserved and can

be clearly recognized in the left petrosal (NMS

G.1992.47.121.2) (Fig. 2C–F). In the right petrosal (NMS

G.1992.47.121.1), a fault-line has cut through this region,

where the bone is also crushed laterally (Fig. 4, dashed

line). The hollowed open space of the cavum supra-

cochleare, as seen on the left, is crushed on the right pet-

rosal. The large secondary facial nerve foramen is

preserved in a similar position on both petrosals. This

foramen is the exit of the facial nerve from the cavum

supracochleare. On the left petrosal, the bone of the

suprafacial commissure is broken, so the entire path of

the facial nerve can be traced from the internal auditory

meatus to the cavum supracochleare, and further from

the cavum through to the secondary facial foramen.

In the left petrosal the prootic sinus groove continues

as a prootic canal, perforating the petrosal just posterior

to the cavum supracochleare. In the right petrosal, the

bone in the area where the prootic groove would join the

space of cavum supracochleare is distorted by crushing

and displacement along the fault line that cuts through

the prootic groove and the cavum supracochleare. As a

result of this distortion, the relationship of these two

structures is obscured in the right petrosal. Largely based

on the location of the prootic canal opening on the exter-

nal (tympanic) aspect of the left petrosal, we interpret the

prootic sinus as traversing through the cavum supra-

cochleare in a similar manner in the right petrosal (Wible

& Hopson 1995). In the reconstructed dorsal-to-ventral

sequence, the prootic sinus vein diverges from the sig-

moid sinus at the top the subarcuate fossa. It then follows

the prootic sinus groove along the lateral margin of the

subarcuate fossa (Fig. 4), and enters the petrosal near the

cavum epiptericum (Fig. 2). Inside the petrosal, the pro-

otic sinus joins the lateral end of the posterior trans-

cochlear sinus, before it enters the tympanic cavity

through the prootic canal opening (Figs 2, 7A–B). Dis-
tally, the prootic sinus connects with the lateral head vein

(Wible & Hopson 1995).

The cavum epiptericum, a bony space formed by the

petrosal that houses the trigeminal ganglion of cranial

nerve V, is preserved on the right petrosal (Figs 3, 4),

but completely lost to damage on the left petrosal.

Medially, the cavum epiptericum is separated from the

internal auditory meatus by a saddle-shape structure

known as the suprafacial commissure (Figs 3C, 4). Pos-

teriorly, the cavum epiptericum is separated by a sliver

of bone from the cavum supracochleare, but both the

cavum epiptericum and the cavum supracochleare are in

the same broader depression formed by the petrosal.

This pattern is similar to features on the endocranial

aspect of the petrosal in Haldanodon (Lillegraven & Kru-

sat 1991) and Morganucodon (Kermack et al. 1981; Gray-

beal et al. 1989). This differs slightly from the petrosal

of the Jurassic triconodontid Priacodon, in which the

semilunar recess (related to the cavum epiptericum) is a

large concave structure, in close proximity to the

endocranial opening of the prootic canal (Rougier et al.

1996, fig. 1). The cavum supracochleare for the genicu-

late ganglion is present in Priacodon, but the bony floor

of this space is interpreted as absent (Rougier et al.

1996, p. 9), a feature that also differs from the structure

of Borealestes (Figs 3, 4).

The paroccipital region of the petrosal is relatively well

preserved in the right petrosal, NMS G.1992.47.121.1

(Figs 5, 6). The anterior part of the paroccipital region is

elevated from the rest of the petrosal. Its most notable

structure is the Y-shaped crest of the crista parotica. We

interpret the presence of a fossa incudis: a shallow

depressed area accommodating the incus, which serves as

the contact point of the incus and the petrosal. On the

lateral side of the anterior paroccipital process, there is a

broad depression representing part of the entoglenoid

recess between the petrosal and the cranial moiety of the

squamosal (Figs 5, 6). The posterior paroccipital process

is excavated by a large and deep paroccipital pneumatic

recess (sensu Ruf et al. 2013). The stylomastoid notch,

which is the exit of the facial nerve from the tympanic

region, is located medially to the base of the posterior

paroccipital process (Fig. 6). The stapedial muscle fossa is

a deep pit located posterior to the fenestra vestibuli and

anteromedial to the posterior paroccipital process. The

mastoid pneumatic recess is a deep excavation into the

paroccipital-mastoid region of the petrosal, and is located

medial to the stapedial muscle fossa and posterolateral to

the perilymphatic foramen (Figs 5, 6). These petrosal

structures of Borealestes are identical to those in the pet-

rosal of the docodont Haldanodon, as described by Ruf

F IG . 7 . Endocasts of interior structures of petrosals in Borealestes. A–D, left petrosal NMS G.1992.47.121.2: A, ventral view of the

preserved inner ear endocast, with blood vessels and nerves; B, endocranial view the inner ear, with blood vessels and nerves; C, inner

ear in ventral view (as preserved, incomplete), without vessels or nerves; D, inner ear in endocranial view (as preserved, incomplete)

without vessels and nerves. E–H are of right petrosal NMS G.1992.47.121.1: E, ventral view of the preserved inner ear endocast, with

blood vessels and nerves; F, endocranial view the inner ear, with blood vessels and nerves; G, inner ear in ventral view (as preserved,

incomplete), without vessels or nerves; H, inner ear in endocranial view (as preserved, incomplete) without vessels and nerves.

Blue = vascular structures, yellow = nerves. Abbreviations: a, anterior; ASC, anterior semi-circular canal; LSC, lateral semi-circular

canal; p, posterior; PSC, posterior semi-circular canal. Arrows indicate anterior direction. All scale bars represent 1 mm.
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et al. (2013), with the four deeply excavated structures of

the petrosal (paroccipital pneumatic recess, the stapedial

fossa, the mastoid pneumatic recess, and the entoglenoid

recess (partly on petrosal)) all strikingly similar between

these two taxa.

The right petrosal (NMS G.1992.47.121.1) also pre-

serves the bony channels and grooves for the arterial sys-

tem from the superior ramus of the stapedial artery from

the tympanic cavity and the arteria diploetica magna

from the occiput (Wible 1990; Rougier et al. 1992; Wible

& Hopson 1995). The pterygo-paroccipital foramen is

located anterior to the crista parotica (Fig. 6). The fora-

men is represented by an open notch because the lateral

border of this foramen is broken in this petrosal of

Borealestes. By contrast, in the more complete petrosal of

Haldanodon, the pterygoparoccipital foramen is fully

encircled. This foramen is the passage for the superior

ramus of the stapedial artery extant mammals and stem

mammaliaforms (Wible 1990; Rougier et al. 1992; Wible

& Hopson 1995). Dorsal of this foramen, the superior

stapedial ramus follows an open groove lateral to the

anterior paroccipital process and joins the arteria diploet-

ica magna that enters through the post-temporal canal

(partially preserved in right petrosal) (Fig. 6). The

superior ramus of the stapedial artery and the arteria

diploetica magna would be confluent with each other to

form the ascending artery housed by the ascending vascu-

lar canal on the lateral side of petrosal that is also a part

of the temporal skull surface. In the petrosal of Haldan-

odon (Lillegraven & Krusat 1991; Ruf et al. 2013) these

structures are not fully exposed, or not fully segmented

from the CT scans. The bony structures related to this

vasculature, as revealed by CT scanning of the petrosal of

Borealestes, are generally similar to those reconstructed

for Morganucodon, and other Mesozoic mammals (Wible

1990; Rougier et al. 1992; Wible & Hopson 1995; Luo

et al. 2012).

Endocast of the inner ear

Both petrosals were crushed post mortem, with the right

petrosal being more complete. In both cases the inner ear

endocasts are somewhat distorted. The approximate

position of the fenestra vestibuli and perilymphatic fora-

men are identifiable despite this. Although the apex of

the cochlear canal is absent in specimen NMS

G.1992.47.121.2, it is clear that the canal is curved

(Figs 2A–B, 7A–D), and this is confirmed by the more

complete cochlear canal of the right petrosal (Figs 3A–B,
7E–H). The degree of curvature/coiling is similar to that

of Haldanodon (Ruf et al. 2013), which can be traced in

the right petrosal of Borealestes.

F IG . 8 . Stapes of the docodont Borealestes. A–G, preserved
parts of the left stapes NMS G.1992.47.121.2: A, left stapedial

footplate (fractured and incomplete) in external view (from the

inner ear space); B, left stapedial footplate (fractured and incom-

plete) in the internal view (toward the inner ear space); C, frag-

ments of crura associated with the left stapedial footplate; D,

approximately dorsal; and E, ventral side views of left stapedial

footplate; F, interpretive reconstruction of external view of left

stapedial footplate; G, interpretive reconstruction of crura from

their fragments; H, interpretive reconstruction of side view of

left stapes. I–O, preserved parts of the right stapes NMS

G.1992.47.121.1: I, right stapedial footplate (incomplete) in

external view (from the inner ear space); J, right stapedial plate

(incomplete) in the internal view (toward the inner ear space);

K, fragments of crura associated with the right stapedial foot-

plate; L, approximately dorsal; and M, ventral side views of right

stapedial footplate, showing the crural bases; N, interpretive

reconstruction of the outline of right stapedial footplate in exter-

nal view; O, interpretive association of crural fragments with

their bases on footplate; P, interpretive reconstruction of side

view of right stapes. All reconstructions based on remaining por-

tions of stapes of NMS G.1992.47.121.1 and NMS

G.1992.47.121.2, and the stapes of Haldanodon (Ruf et al. 2013).

Scale bars represent 1 mm.
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Vascular channels in pars cochlearis

The high quality of our scans (at a resolution of 12.3 and

8.9 lm) permits the reconstruction of some vascular chan-

nels and networks of small blood vessels in the bone of the

pars cochlearis (Fig. 7). Some of these networks of tiny ves-

sels can be directly traced and shown to be connected to

the structures inside the bony labyrinth (Figs 2, 3A–B, 7).
A noteworthy feature of these is the circum-promontorial

sinus plexus (sensu Kermack et al. 1981) a network of tiny

vessels (probably venous in nature) embedded in the pars

cochlearis on the ventromedial side of the cochlear canal.

This vascular network connects to the inferior petrosal

sinus along the medial side of the promontorium (pars

cochlearis) (Figs 2A, B; 3A, B; 7A, B, E, F). We also identify

two relatively large vascular channels that traverse the bone

of the pars cochlearis. We interpret these as probably

venous in nature due to their full connections to other

sinuses or veins (Figs 2, 3, 7). We have here termed these

two major channels the anterior and posterior trans-

cochlear sinuses (Figs 2, 3, 7).

The anterior trans-cochlear sinus (a) connects medially

with the inferior petrosal sinus. From there it traverses

through the bone of the pars cochlearis and enters laterally

into the space of the cavum supracochleare (Figs 2, 3), the

space that houses the geniculate ganglion of the facial

nerve. Inside the pars cochlearis the course of anterior

trans-cochlear sinus curves anteriorly around the bony

internal auditory meatus. The opening for the secondary

foramen of the facial nerve (VII) is very large in both left

and right petrosals. This foramen could accommodate the

passage of additional structure, such as the anterior trans-

cochlear sinus. We therefore offer a speculative interpreta-

tion that the anterior trans-cochlear sinus exits through the

enlarged secondary facial foramen, along with the facial

nerve.

The posterior trans-cochlear sinus (p) starts in the pos-

teromedial corner of the promontorium near the jugular

notch, originating from a single large foramen in the left

petrosal (Fig. 2), or in two foramina as in the right petrosal

(Fig. 3). The bony course of this sinus is positioned more

posteriorly than, and away from, the anterior trans-

cochlear sinus. It curves around the main opening of the

internal auditory meatus, and between the cochlear nerve

foramen and the vestibular nerve foramen (Figs 2, 3, 7).

The posterior trans-cochlear sinus is confluent with the

prootic canal, suggesting that this sinus is connected to the

prootic vein, before the prootic vein exits the petrosal into

the tympanic region at the prootic canal opening (Fig. 2).

The anterior and posterior trans-cochlear sinuses are

connected below the facial nerve geniculate ganglion in the

cavum supracochleare, as shown in the right petrosal

(Figs 3B, 7F). However, this confluence is not observed in

the left petrosal, where anterior trans-cochlear sinus and

posterior trans-cochlear sinus remain separate below the

geniculate ganglion. This feature may be bilaterally variable,

or the asymmetry may be an artefact of preservation.

We also recognize a network of small vessels in the paroc-

cipital region of the petrosal, just underneath the entogle-

noid recess. This corresponds to the squamosal plexus (Ruf

et al. 2013, fig. 4). Altogether, these venous features demon-

strate a high degree of vascularization of the cochlea and sur-

rounding osteological structures of the pars cochlearis, as

initially observed in Haldanodon (Ruf et al. 2013).

The internal auditory meatus on the endocranial aspect

of the petrosals is relatively shallow, somewhat similar to

that in the petrosal of Morganucodon (Kermack et al.

1981). The floor is divided by a low crest (crista falci-

formis) into a ventral depression for the large foramen of

the cochlear nerve, and a dorsal depression for the pri-

mary facial nerve foramen and the foramen for the

vestibular nerve (Figs 2F, 3C). The bony floor of the

cochlear nerve foramen is preserved as a large and long

slit in the right petrosal (Figs 1G, 3, 4) but this foramen

appears to be broken widely open on the left petrosal

(Fig. 2). The sulcus for the lagenar nerve as found in

inner ear endocast in Haldanodon (Ruf et al. 2013, fig. 6)

corresponds in position to part of the wide opening out-

line of the cochlear foramen in Borealestes. In the endo-

cast of the right petrosal there is a suggestion of a

possible lagenar nerve sulcus, but it cannot be conclu-

sively identified in both petrosals of Borealestes due to

lack of preservation.

Due to breakage of the anterior part of the pars

cochlearis in the left petrosal (NMS G.1992.47.121.2), the

anterior part of the internal auditory meatus that would

encircle the primary facial nerve foramen is incomplete in

this specimen. Fortuitously, this helps to expose the

entrance of the facial nerve (VII) into the petrosal, and the

facial nerve’s conduit leading to the space for the geniculate

ganglion can be clearly identified (Fig. 2F). In our digital

reconstruction, the vestibular nerve (VIII) appears to be

close to the primary facial nerve and the geniculate gan-

glion (Figs 7B). This is because the primary facial nerve

foramen is in close proximity to the foramen of the vestibu-

lar nerve (Figs 2F, 3C), and both are situated together in

dorsal depression in the floor of the internal auditory mea-

tus. In the petrosals of other mammaliaforms described so

far, the passages of the vestibular nerve (VIII) and the facial

nerve (VII) are clearly more widely separated (Kermack

et al. 1981; Graybeal et al. 1989; Ruf et al. 2013; also pers.

obs. on Sinoconodon and Hadrocodium).

Stapes

Among the bone fragments displaced into the interior of

both petrosals (Fig. 1H, I), we recovered parts of the left
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and right stapes (Fig. 8). We identify a posterior and

anterior stapedial crura, and crural fragments (Fig. 8). In

the left petrosal, the stapedial footplate is fractured into

three pieces which, we estimate, together constitute about

70% of the entire footplate (Fig. 8A–H). The recon-

structed footplate has a nearly circular outline and is

overall convex proximally toward the inner ear space. The

lateral (external) aspect of the footplate is slightly con-

cave, with curved edges around the periphery. The stape-

dial footplate recovered from the right petrosal (Fig. 8I–
P) is more complete and confirms the position of the

crura and the round shape of the footplate. The morphol-

ogy of the bullate footplate resembles the stapes of

Haldanodon (sensu S�anchez-Villagra & Nummela 2001;

Ruf et al. 2013).

Both stapes show a central protruding bony knob pre-

served on the concave side (the lateral surface) of the

footplate, which represents the base of the anterior crus

(Fig. 8). We recovered additional separated pieces of bone

that can be identified as fragments of the stapedial crura;

the crural fragment coloured orange in Figure 8C (the

middle fragment of the three) is most likely to be the lat-

eral portion of the anterior crus. The two other fragments

may be parts of the anterior or the posterior crus

(Fig. 8G). The right stapes even has longer parts of each

crus preserved in anatomical position, which indicate a

square outline of the stapedial head (Fig. 8I–P). In addi-

tion, we interpret the rather bulbous fragment (Fig. 8K,

blue coloured left-hand fragment) recovered from the

right petrosal as part of the stapedial head (Fig. 8O). The

stapedial footplate has a length of approximately 0.8 mm,

and width of approximately 0.6–0.7 mm (based on mea-

surements of both stapedial footplates), giving it a stape-

dial ratio of 0.75–0.86. However, the exact ratio is not

certain due to the broken periphery of the footplate.

DISCUSSION

The petrosal and endocast of Borealestes is morphologically

similar to that of Haldanodon, but there are some key differ-

ences that separate the two genera. A bony ridge visible on

the anterolateral aspect (Figs 2E, 4A, 6) corresponds to a

similar bony ridge in the same position on the petrosal of

Haldanodon (Ruf et al. 2013). The anterior part of the

cochlear canal is clearly curved, and the apical region of the

curved cochlear canal is slightly inflated, as can be deter-

mined in the right petrosal of Borealestes (Fig. 7E–H). Both

of these features on the right inner ear endocast are consis-

tent with the incomplete inner ear endocast on the left side.

The degree of curvature/coiling and apical inflation appears

similar to that of Haldanodon (Ruf et al. 2013).

In Haldanodon, the anterior rim of the fenestra vesti-

buli is separated from the tympanic openings of the

prootic canal, the secondary facial foramen, and from the

hiatus Fallopii (Ruf et al. 2013, fig. 2). In the same region

of petrosal of Borealestes, the fenestra vestibuli is also sep-

arated from these structures. However, Borealestes has an

elevated crest in continuation with the bony ridge of the

promontorium on the left petrosal (the same region is

damaged on the right petrosal). This crest separates the

fenestra vestibuli and the prootic canal opening (Fig. 2C,

E). Such a crest is not present in Haldanodon and there-

fore Borealestes is different in this feature.

The morphology of the stapedial footplate is bullate as

in Haldanodon (sensu S�anchez-Villagra & Nummela 2001;

Ruf et al. 2013). In their description of the stapes of Hal-

danodon exspectatus, Ruf et al. (2013) reconstructed the

stapes as having parallel anterior and posterior crus, with a

large stapedial foramen. This is consistent with cynodonts

and stem mammals for which the stapes is known (Nova-

cek & Wyss 1986; Lillegraven & Krusat 1991; Allin & Hop-

son 1992; Crompton & Luo 1993; Luo 2007; Gaetano &

Abdala 2015; Schultz et al. 2018). The stapedial footplates

of Haldanodon and Borealestes are now almost equally

well-known. In Haldanodon, the stapedial head is smaller

than the stapedial footplate, the anterior crus is in central

position, and the posterior crus is on the rim of the stape-

dial footplate. The rim of the stapedial footplate is slightly

curved upward (bullate shape) and the stapedial footplate

is basically round. Because Borealestes and Haldanodon are

both docodonts, and phylogenetic analyses indicate they

are closely related within a subclade of docodonts (Ji et al.

2006; Luo & Martin 2007; Averianov et al. 2010; Ruf et al.

2013; Luo et al. 2015b; Schultz et al. 2018), our recon-

struction of the stapes of Borealestes (augmented by infor-

mation from that of Haldanodon) is justifiable on a

phylogenetic basis (Fig. 8H, P).

New key features identified in both petrosals of Bore-

alestes are the two vascular sinuses that traverse the pars

cochlearis: trans-cochlear canal anterior (a) and trans-

cochlear canal posterior (p) (Figs 2A–B, 3A–B, 7). These
connect to the large channels of the inferior petrosal

sinus; the venous vessels extending in an anteroposterior

direction along the medial side of the pars cochlearis of

the petrosal. Within the bone of the pars cochlearis, the

trans-cochlear canals are also connected to the circum-

promontorium plexus. The inferior petrosal sinus is a

major vascular structure in petrosals among Mesozoic

groups of crown mammals (Rougier et al. 1992; Rougier

et al. 1996; Luo et al. 2012; Hughes et al. 2015). For

crown therians, this feature is well documented in Creta-

ceous and Paleocene metatherians (Wible 1990; Ladev�eze

& de Muizon 2007, 2010). In the petrosals of Borealestes,

the channel for the inferior petrosal sinus, the circum-

promontorium plexus, and the two trans-cochlear vascu-

lar sinuses (Figs 2A, B; 3A, B; 7A, B, E, F), form a well-

developed vascular network. This corroborates earlier
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observations that the petrosals of docodonts are highly

vascularized, more so than that of Morganucodon

(Kermack et al. 1981; Graybeal et al. 1989). In extant

monotremes, the petrosal does not have the heavy vascu-

larization in these regions, in contrast to Haldanodon and

Borealestes’ extensive vascularization throughout the pet-

rosal (Kuhn & Zeller 1987; Ruf et al. 2013).

The trans-cochlear sinuses in the petrosal of Borealestes

are newly recognized anatomical features. Either these are

unique features (autapomorphic) of Borealestes, or they

could be derived features (apomorphic) of docodonts as a

whole if their presence can be confirmed by re-scanning

and re-segmenting the petrosal of Haldanodon, or petros-

als of other docodonts. These two sinuses are also interest-

ing in their connection to other vessels. The posterior

trans-cochlear sinus connects from the endocranial open-

ing of the prootic (venous) sinus through the pars

cochlearis to the inferior petrosal sinus. This suggests that

in Borealestes the prootic sinus was connected to the infe-

rior petrosal sinus. The posterior trans-cochlear sinus is

confluent with the prootic sinus, and then exits through

the prootic canal passing through the lateral trough of the

petrosal (see Wible & Hopson 1995 and Rougier & Wible

2006 for overviews of the prootic canal in cynodonts).

This vascular channel connection is a new finding and has

not been previously documented in other mammali-

aforms. However, the lack of these trans-cochlear sinuses

in other mammaliaforms could be due to the fact that the

interior structures in the petrosals of other mammaliaform

have not yet been examined by such high-resolution lCT
scanning as in our study of Borealestes.

The preserved features on the anterior and posterior

paroccipital processes and in the mastoid region in the

right petrosal of Borealestes (Figs 5, 6) are almost

identical to the more complete homologues in Haldan-

odon (Ruf et al. 2013). The major excavated (presumably

pneumatized) structures in these regions, and the degree

of vascularization in the bone that form them, is similar

in Borealestes and Haldanodon in the following: the ento-

glenoid recess (partly preserved); the well-developed

paroccipital plexus; the prominent paroccipital pneumatic

recess on the ventral aspect of the posterior paroccipital

process; the depth of the stapedial muscle fossa; and the

deep mastoid pneumatic recess. The pneumatization of

the exterior surface structures in the paroccipital and

mastoid regions of the petrosal, and high degree of vascu-

larization in the bones forming these structures are

unique and derived features of Borealestes and Haldan-

odon, and possibly of docodonts as a group.

The overall morphology of the inner ear of Borealestes is

similar to that of Haldanodon, and implies similar hearing

capabilities in these two genera of docodont. The vascular-

ization in the petrosal of Haldanodon, the presence of a

paroccipital pneumatic recess, and curvature of the cochlea

were all considered to be evidence in support of a fossorial

lifestyle in that genus by Ruf et al. (2013). This was coupled

with features such as vascularization in the rest of the basi-

cranium, and thicker lateral and posterior semi-circular

canals (Ruf et al. 2013). As these additional features are not

preserved in Borealestes, we can only tentatively infer a

similar lifestyle for these two taxa. The hypothesis about a

fossorial lifestyle of Borealestes can be tested when the

postcranial morphology is more fully revealed; the petrosals

described here are part of a larger morphological study of a

nearly complete specimen of the Borealestes skeleton NMS

G.1992.47.121.1 (currently under study by EP). The addi-

tional cranial material, coupled with postcranial elements,

are expected to shed further light on the palaeobiology of

Borealestes in the future.

CONCLUSIONS

The high-resolution of our computed tomography and

synchrotron scans has enabled us to characterize the details

of the vascularized structures of the petrosal of Borealestes,

and provide the first endocranial view of a docodont pet-

rosal. This has led to the identification of two previously

unknown structures: the anterior and posterior trans-

cochlear sinuses. This has also made it feasible for us to

develop an overall reconstruction of the vascular and

innervation structure in the petrosal. Despite post mortem

crushing and the displacement of fragments of the petrosal

and stapes inside the cochlear canal, we have been able to

digitally reconstruct broken fragments of the petrosal and

stapes. This reveals a more or less circular fenestra vestibuli

and stapedial footplate, with a bullate morphology, as in

Haldanodon. There are broad similarities in the morphol-

ogy of the petrosal of Borealestes to that of Haldanodon,

from which we tentatively suggest a similar ecology for

these two docodonts. Further skeletal material currently

under study will allow us to further explore the ecology of

Borealestes, and add to our understanding of ecomor-

phologcal diversity in Docodonta.
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