45,472 research outputs found

    Weak coupling d-wave BCS superconductivity and unpaired electrons in overdoped La_{2-x}Sr_{x}CuO_{4} single crystals

    Get PDF
    The low-temperature specific heat (SH) of overdoped La_{2-x}Sr_{x}CuO_{4} single crystals (0.178=<x=<0.290) has been measured. For the superconducting samples (0.178=<x=<0.238), the derived gap values (without any adjusting parameters) approach closely onto the theoretical prediction \Delta_{0}=2.14k_{B}T_{c} for the weak-coupling d-wave BCS superconductivity. In addition, the residual term \gamma(0) of SH at H=0 increases with x dramatically when beyond x~0.22, and finally evolves into the value of a complete normal metallic state at higher doping levels, indicating growing amount of unpaired electrons. We argue that this large \gamma(0) cannot be simply attributed to the pair breaking induced by the impurity scattering, instead the phase separation is possible.Comment: 6 pages, 6 figures; Contents added; Accepted for publication in Phys. Rev.

    Notes on highest weight modules of the elliptic algebra Aq,p(sl^2){\cal A}_{q,p}\left(\widehat{sl}_2\right)

    Full text link
    We discuss a construction of highest weight modules for the recently defined elliptic algebra Aq,p(sl^2){\cal A}_{q,p}(\widehat{sl}_2), and make several conjectures concerning them. The modules are generated by the action of the components of the operator LL on the highest weight vectors. We introduce the vertex operators Φ\Phi and Ψ\Psi^* through their commutation relations with the LL-operator. We present ordering rules for the LL- and Φ\Phi-operators and find an upper bound for the number of linearly independent vectors generated by them, which agrees with the known characters of sl^2\widehat{sl}_2-modules.Comment: Nonstandard macro package eliminate

    Controlling Condensate Collapse and Expansion with an Optical Feshbach Resonance

    Full text link
    We demonstrate control of the collapse and expansion of an 88Sr Bose-Einstein condensate using an optical Feshbach resonance (OFR) near the 1S0-3P1 intercombination transition at 689 nm. Significant changes in dynamics are caused by modifications of scattering length by up to +- ?10a_bg, where the background scattering length of 88Sr is a_bg = -2a0 (1a0 = 0.053 nm). Changes in scattering length are monitored through changes in the size of the condensate after a time-of-flight measurement. Because the background scattering length is close to zero, blue detuning of the OFR laser with respect to a photoassociative resonance leads to increased interaction energy and a faster condensate expansion, whereas red detuning triggers a collapse of the condensate. The results are modeled with the time-dependent nonlinear Gross-Pitaevskii equation.Comment: 5 pages, 3 figure

    A Scalable Asynchronous Distributed Algorithm for Topic Modeling

    Full text link
    Learning meaningful topic models with massive document collections which contain millions of documents and billions of tokens is challenging because of two reasons: First, one needs to deal with a large number of topics (typically in the order of thousands). Second, one needs a scalable and efficient way of distributing the computation across multiple machines. In this paper we present a novel algorithm F+Nomad LDA which simultaneously tackles both these problems. In order to handle large number of topics we use an appropriately modified Fenwick tree. This data structure allows us to sample from a multinomial distribution over TT items in O(logT)O(\log T) time. Moreover, when topic counts change the data structure can be updated in O(logT)O(\log T) time. In order to distribute the computation across multiple processor we present a novel asynchronous framework inspired by the Nomad algorithm of \cite{YunYuHsietal13}. We show that F+Nomad LDA significantly outperform state-of-the-art on massive problems which involve millions of documents, billions of words, and thousands of topics

    Standard model plethystics

    Get PDF
    We study the vacuum geometry prescribed by the gauge invariant operators of the minimal supersymmetric standard model via the plethystic program. This is achieved by using several tricks to perform the highly computationally challenging Molien-Weyl integral, from which we extract the Hilbert series, encoding the invariants of the geometry at all degrees. The fully refined Hilbert series is presented as the explicit sum of 1422 rational functions. We found a good choice of weights to unrefine the Hilbert series into a rational function of a single variable, from which we can read off the dimension and the degree of the vacuum moduli space of the minimal supersymmetric standard model gauge invariants. All data in Mathematica format are also presented

    Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement

    Full text link
    We present a way for symmetric multiparty-controlled teleportation of an arbitrary two-particle entangled state based on Bell-basis measurements by using two Greenberger-Horne-Zeilinger states, i.e., a sender transmits an arbitrary two-particle entangled state to a distant receiver, an arbitrary one of the n+1n+1 agents via the control of the others in a network. It will be shown that the outcomes in the cases that nn is odd or it is even are different in principle as the receiver has to perform a controlled-not operation on his particles for reconstructing the original arbitrary entangled state in addition to some local unitary operations in the former. Also we discuss the applications of this controlled teleporation for quantum secret sharing of classical and quantum information. As all the instances can be used to carry useful information, its efficiency for qubits approaches the maximal value.Comment: 9 pages, 3 figures; the revised version published in Physical Review A 72, 022338 (2005). The detail for setting up a GHZ-state quantum channel is adde
    corecore