455 research outputs found

    Ginsparg-Wilson Relation and Ultralocality

    Full text link
    It is shown that it is impossible to construct a free theory of fermions on infinite hypercubic Euclidean lattice in four dimensions that is: (a) ultralocal, (b) respects symmetries of hypercubic lattice, (c) corresponding kernel satisfies D gamma5 + gamma5 D = D gamma5 D (Ginsparg-Wilson relation), (d) describes single species of massless Dirac fermions in the continuum limit.Comment: 4 pages, REVTEX; few minor change

    Towards Weyl fermions on the lattice without artefacts

    Full text link
    In spite of the breakthrough in non-perturbative chiral gauge theories during the last decade, the present formulation has stubborn artefacts. Independently of the fermion representation one is confronted with unwanted CP violation and infinitely many undetermined weight factors. Renormalization group identifies the culprit. We demonstrate the procedure on Weyl fermions in a real representation

    Ginsparg-Wilson relation and the overlap formula

    Get PDF
    The fermionic determinant of a lattice Dirac operator that obeys the Ginsparg-Wilson relation factorizes into two factors that are complex conjugate of each other. Each factor is naturally associated with a single chiral fermion and can be realized as a overlap of two many body vacua.Comment: 4 pages, plain tex, no figure

    Solutions of the Ginsparg-Wilson Relation

    Get PDF
    We analyze general solutions of the Ginsparg-Wilson relation for lattice Dirac operators and formulate a necessary condition for such operators to have non-zero index in the topologically nontrivial background gauge fields.Comment: 6 pages, latex, no figures, set T to 1 in eqs. (10)--(13

    Ginsparg-Wilson-Luscher Symmetry and Ultralocality

    Get PDF
    Important recent discoveries suggest that Ginsparg-Wilson-Luscher (GWL) symmetry has analogous dynamical consequences for the theory on the lattice as chiral symmetry does in the continuum. While it is well known that inherent property of lattice chiral symmetry is fermion doubling, we show here that inherent property of GWL symmetry is that the infinitesimal symmetry transformation couples fermionic degrees of freedom at arbitrarily large lattice distances (non-ultralocality). The consequences of this result for ultralocality of symmetric actions are discussed.Comment: 18 pages, LATEX. For clarity changed to infinitesimal transformations, typos corrected, explicit hypothesis adde

    The Square-Lattice Heisenberg Antiferromagnet at Very Large Correlation Lengths

    Full text link
    The correlation length of the square-lattice spin-1/2 Heisenberg antiferromagnet is studied in the low-temperature (asymptotic-scaling) regime. Our novel approach combines a very efficient loop cluster algorithm -- operating directly in the Euclidean time continuum -- with finite-size scaling. This enables us to probe correlation lengths up to ξ350,000\xi \approx 350,000 lattice spacings -- more than three orders of magnitude larger than any previous study. We resolve a conundrum concerning the applicability of asymptotic-scaling formulae to experimentally- and numerically-determined correlation lengths, and arrive at a very precise determination of the low-energy observables. Our results have direct implications for the zero-temperature behavior of spin-1/2 ladders.Comment: 12 pages, RevTeX, plus two Postscript figures. Some minor modifications for final submission to Physical Review Letters. (accepted by PRL

    Microcanonical finite-size scaling in specific heat diverging 2nd order phase transitions

    Get PDF
    A Microcanonical Finite Site Ansatz in terms of quantities measurable in a Finite Lattice allows to extend phenomenological renormalization (the so called quotients method) to the microcanonical ensemble. The Ansatz is tested numerically in two models where the canonical specific-heat diverges at criticality, thus implying Fisher-renormalization of the critical exponents: the 3D ferromagnetic Ising model and the 2D four-states Potts model (where large logarithmic corrections are known to occur in the canonical ensemble). A recently proposed microcanonical cluster method allows to simulate systems as large as L=1024 (Potts) or L=128 (Ising). The quotients method provides extremely accurate determinations of the anomalous dimension and of the (Fisher-renormalized) thermal ν\nu exponent. While in the Ising model the numerical agreement with our theoretical expectations is impressive, in the Potts case we need to carefully incorporate logarithmic corrections to the microcanonical Ansatz in order to rationalize our data.Comment: 13 pages, 8 figure

    Finite size and temperature effects in the AF Heisenberg model

    Full text link
    The low temperature and large volume effects in the d=2+1 antiferromagnetic quantum Heisenberg model are dominated by magnon excitations. The leading and next-to-leading corrections are fully controlled by three physical constants, the spin stiffness, the spin wave velocity and the staggered magnetization. Among others, the free energy, the ground state energy, the low lying excitations, staggered magnetization, staggered and uniform susceptibilities are studied here. The special limits of very low temperature and infinite volume are considered also.Comment: 44 pages, LATEX, no figure

    Role of the σ\sigma-resonance in determining the convergence of chiral perturbation theory

    Full text link
    The dimensionless parameter ξ=Mπ2/(16π2Fπ2)\xi = M_\pi^2/(16 \pi^2 F_\pi^2), where FπF_\pi is the pion decay constant and MπM_\pi is the pion mass, is expected to control the convergence of chiral perturbation theory applicable to QCD. Here we demonstrate that a strongly coupled lattice gauge theory model with the same symmetries as two-flavor QCD but with a much lighter σ\sigma-resonance is different. Our model allows us to study efficiently the convergence of chiral perturbation theory as a function of ξ\xi. We first confirm that the leading low energy constants appearing in the chiral Lagrangian are the same when calculated from the pp-regime and the ϵ\epsilon-regime as expected. However, ξ0.002\xi \lesssim 0.002 is necessary before 1-loop chiral perturbation theory predicts the data within 1%. For ξ>0.0035\xi > 0.0035 the data begin to deviate dramatically from 1-loop chiral perturbation theory predictions. We argue that this qualitative change is due to the presence of a light σ\sigma-resonance in our model. Our findings may be useful for lattice QCD studies.Comment: 5 pages, 6 figures, revtex forma

    Simulations with different lattice Dirac operators for valence and sea quarks

    Get PDF
    We discuss simulations with different lattice Dirac operators for sea and valence quarks. A goal of such a "mixed" action approach is to probe deeper the chiral regime of QCD by enabling simulations with light valence quarks. This is achieved by using chiral fermions as valence quarks while computationally inexpensive fermions are used in the sea sector. Specifically, we consider Wilson sea quarks and Ginsparg-Wilson valence quarks. The local Symanzik action for this mixed theory is derived to O(a), and the appropriate low energy chiral effective Lagrangian is constructed, including the leading O(a) contributions. Using this Lagrangian one can calculate expressions for physical observables and determine the Gasser-Leutwyler coefficients by fitting them to the lattice data.Comment: 17 pages, 1 ps figure (2 clarification paragraphs added
    corecore