63,252 research outputs found
Optimal Estimates for the Electric Field in Two-Dimensions
The purpose of this paper is to set out optimal gradient estimates for
solutions to the isotropic conductivity problem in the presence of adjacent
conductivity inclusions as the distance between the inclusions goes to zero and
their conductivities degenerate. This difficult question arises in the study of
composite media. Frequently in composites, the inclusions are very closely
spaced and may even touch. It is quite important from a practical point of view
to know whether the electric field (the gradient of the potential) can be
arbitrarily large as the inclusions get closer to each other or to the boundary
of the background medium.
In this paper, we establish both upper and lower bounds on the electric field
in the case where two circular conductivity inclusions are very close but not
touching. We also obtain such bounds when a circular inclusion is very close to
the boundary of a circular domain which contains the inclusion. The novelty of
these estimates, which improve and make complete our earlier results published
in Math. Ann., is that they give an optimal information about the blow-up of
the electric field as the conductivities of the inclusions degenerate.Comment: 26 page
Recommended from our members
Defective development of gamma/delta T cells in interleukin 7 receptor-deficient mice is due to impaired expression of T cell receptor gamma genes.
Mice lacking the interleukin 7 receptor (IL-7R) generate alpha/beta T cells at a detectable but greatly reduced rate, but gamma/delta T cells are completely absent. The special role of IL-7R signaling in gamma/delta T cell development has remained unclear. IL-7Ralpha(-/-) mice exhibit a paucity of gamma gene rearrangements. This striking observation can be explained by a defect in T cell receptor (TCR)-gamma gene rearrangement, a defect in TCR-gamma gene transcription leading to death of gamma/delta lineage cells, and/or a requirement for IL-7R in commitment of cells to the gamma/delta lineage. To determine the role of IL-7R signaling in gamma/delta T cell development, we examined transcription of a prerearranged TCR-gamma transgene in IL-7Ralpha(-/-) mice, as well as the effects of IL-7 on transcription of endogenous, rearranged TCR-gamma genes in alpha/beta lineage cells. The results demonstrate that IL-7R-mediated signals are necessary for the normal expression of rearranged TCR-gamma genes. Equally significant, the results show that the poor expression of TCR-gamma genes in IL-7Ralpha(-/-) mice is responsible for the selective deficit in gamma/delta cells in these mice, since a high copy TCR-gamma transgene exhibited sufficient residual expression in IL-7Ralpha(-/-) mice to drive gamma/delta cell development. The results indicate that the absence of gamma/delta T cells in IL-7Ralpha(-/-) mice is due to insufficient TCR-gamma gene expression
Spin-Driven Nematic Instability of the Multi-Orbital Hubbard Model: Application to Iron-Based Superconductors
Nematic order resulting from the partial melting of density-waves has been
proposed as the mechanism to explain nematicity in iron-based superconductors.
An outstanding question, however, is whether the microscopic electronic model
for these systems -- the multi-orbital Hubbard model -- displays such an
ordered state as its leading instability. In contrast to usual electronic
instabilities, such as magnetic and charge order, this fluctuation-driven
phenomenon cannot be captured by the standard RPA method. Here, by including
fluctuations beyond RPA in the multi-orbital Hubbard model, we derive its
nematic susceptibility and contrast it with its ferro-orbital order
susceptibility, showing that its leading instability is the spin-driven nematic
phase. Our results also demonstrate the primary role played by the
orbital in driving the nematic transition, and reveal that high-energy magnetic
fluctuations are essential to stabilize nematic order in the absence of
magnetic order.Comment: 8 pages, 6 figure
Effect of Charge Fluctuations on the Persistent Current through a Quantum Dot
We study coherent charge transfer between an Aharonov-Bohm ring and a
side-attached quantum dot. The charge fluctuation between the two
sub-structures is shown to give rise to algebraic suppression of the persistent
current circulating the ring as the size of the ring becomes relatively large.
The charge fluctuation at resonance provides transition between the diamagnetic
and the paramagnetic states.
Universal scaling, crossover behavior of the persistent current from a
continuous to a discrete energy limit in the ring is also discussed.Comment: 5 pages, 4 figure
- …