31,396 research outputs found

    Improving information filtering via network manipulation

    Get PDF
    Recommender system is a very promising way to address the problem of overabundant information for online users. Though the information filtering for the online commercial systems received much attention recently, almost all of the previous works are dedicated to design new algorithms and consider the user-item bipartite networks as given and constant information. However, many problems for recommender systems such as the cold-start problem (i.e. low recommendation accuracy for the small degree items) are actually due to the limitation of the underlying user-item bipartite networks. In this letter, we propose a strategy to enhance the performance of the already existing recommendation algorithms by directly manipulating the user-item bipartite networks, namely adding some virtual connections to the networks. Numerical analyses on two benchmark data sets, MovieLens and Netflix, show that our method can remarkably improve the recommendation performance. Specifically, it not only improve the recommendations accuracy (especially for the small degree items), but also help the recommender systems generate more diverse and novel recommendations.Comment: 6 pages, 5 figure

    Entanglement and spin squeezing properties for three bosons in two modes

    Full text link
    We discuss the canonical form for a pure state of three identical bosons in two modes, and classify its entanglement correlation into two types, the analogous GHZ and the W types as well known in a system of three distinguishable qubits. We have performed a detailed study of two important entanglement measures for such a system, the concurrence C\mathcal{C} and the triple entanglement measure τ\tau. We have also calculated explicitly the spin squeezing parameter ξ\xi and the result shows that the W state is the most ``anti-squeezing'' state, for which the spin squeezing parameter cannot be regarded as an entanglement measure.Comment: 7 pages, 6 figures; corrected figure sequence. Thanks to Dr. Han P

    The Degasperis-Procesi equation with self-consistent sources

    Full text link
    The Degasperis-Procesi equation with self-consistent sources(DPESCS) is derived. The Lax representation and the conservation laws for DPESCS are constructed. The peakon solution of DPESCS is obtained.Comment: 15 page

    Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach

    Get PDF
    Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR

    Microwave-induced nonequilibrium temperature in a suspended carbon nanotube

    Full text link
    Antenna-coupled suspended single carbon nanotubes exposed to 108 GHz microwave radiation are shown to be selectively heated with respect to their metal contacts. This leads to an increase in the conductance as well as to the development of a power-dependent DC voltage. The increased conductance stems from the temperature dependence of tunneling into a one-dimensional electron system. The DC voltage is interpreted as a thermovoltage, due to the increased temperature of the electron liquid compared to the equilibrium temperature in the leads

    Hole Doping Dependence of the Coherence Length in La2−xSrxCuO4La_{2-x}Sr_xCuO_4 Thin Films

    Full text link
    By measuring the field and temperature dependence of magnetization on systematically doped La2−xSrxCuO4La_{2-x}Sr_xCuO_4 thin films, the critical current density jc(0)j_c(0) and the collective pinning energy Up(0)U_p(0) are determined in single vortex creep regime. Together with the published data of superfluid density, condensation energy and anisotropy, for the first time we derive the doping dependence of the coherence length or vortex core size in wide doping regime directly from the low temperature data. It is found that the coherence length drops in the underdoped region and increases in the overdoped side with the increase of hole concentration. The result in underdoped region clearly deviates from what expected by the pre-formed pairing model if one simply associates the pseudogap with the upper-critical field.Comment: 4 pages, 4 figure
    • …
    corecore