256,803 research outputs found

    The GSFC NASTRAN thermal analyzer new capabilities

    Get PDF
    An overview of four analysis capabilities, which developed and integrated into the NASTRAN Thermal Analyzer, is given. To broaden the scope of applications, these additions provide the NTA users with the following capabilities: (1) simulating a thermal louver as a means of the passive thermal control, (2) simulating a fluid loop for transporting energy as a means of the active thermal control, (3) condensing a large sized finite element model for an efficient transient thermal analysis, and (4) entering multiple boundary condition sets in a single submission for execution in steady state thermal analyses

    Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates

    Get PDF
    A general solution for Stokes’ equation in bipolar co-ordinates is derived, and then applied to the arbitrary motion of a sphere in the presence of a plane fluid/fluid interface. The drag force and hydrodynamic torque on the sphere are then calculated for four specific motions of the sphere; namely, translation perpendicular and parallel to the interface and rotation about an axis which is perpendicular and parallel, respectively, to the interface. The most significant result of the present work is the comparison between these numerically exact solutions and the approximate solutions from part 1. The latter can be generalized to a variety of particle shapes, and it is thus important to assess their accuracy for this case of spherical particles where an exact solution can be obtained. In addition to comparisons with the approximate solutions, we also examine the predicted changes in the velocity, pressure and vorticity fields due to the presence of the plane interface. One particularly interesting feature of the solutions is the fact that the direction of rotation of a freely suspended sphere moving parallel to the interface can either be the same as for a sphere rolling along the interface (as might be intuitively expected), or opposite depending upon the location of the sphere centre and the ratio of viscosities for the two fluids

    MAS platforms as an enabler of enterprise mobilisation: The state of the art

    Get PDF
    One of the main application areas for multi-agent systems technology is enterprise mobilization, wherein the main business process actors are nomadic workers. An agent's autonomy, sociality and intelligence are highly prized features when it comes to supporting those mobile workers who are geographically isolated from the main knowledge source (i.e. the corporate Intranet) and are frequently moving from one location to another. Based on experience gained from two field trials of applications (built using for multi-agent systems technology and running on lightweight handheld devices) that support mobile business processes for telecommunications service provisioning and maintenance, this paper proposes desirable metrics for any multi-agent systems platform intended for enterprise mobilisation use. These metrics are then used to compare a number of existing multi-agent systems platforms, and based on the results, this paper identifies some areas for improvement

    Response analysis of an automobile shipping container

    Get PDF
    The design and development of automobile shipping containers to reduce enroute damage are discussed. Vibration tests were conducted to determine the system structural integrity. A dynamic analysis was made using NASTRAN and the results of the test and the analysis are compared

    Optical conductivity of one-dimensional narrow-gap semiconductors

    Full text link
    The optical conductivities of two one-dimensional narrow-gap semiconductors, anticrossing quantum Hall edge states and carbon nanotubes, are studied using bosonization method. A lowest order renormalization group analysis indicates that the bare band gap can be treated perturbatively at high frequency/temperature. At very low energy scale the optical conductivity is dominated by the excitonic contribution, while at temperature higher than a crossover temperature the excitonic features are eliminated by thermal fluctuations. In case of carbon nanotubes the crossover temperature scale is estimated to be 300 K.Comment: RevTeX4 file, 6 pages, no figur

    Mixing 4D-Equipped and Unequipped Aircraft in the Terminal Area

    Get PDF
    On-board 4D guidance systems, which predict and control the touchdown time of an aircraft to an accuracy of a few seconds throughout the descent, were developed and demonstrated in several flight test programs. However, in addition to refinements of the on board system, two important issues still need to be considered. First, in order to make effective use of these on-board systems, it is necessary to understand and develop the interactions of the airborne and air traffic control (ATC) system in the proposed advanced environment. Unless the total system is understood, the advanced on-board system may prove unusable from an ATC standpoint. Second, in planning for a future system in which all aircraft are 4D equipped, it is necessary to confront the transition situation in which some percentage of traffic must still be handled by conventional means. In terms of 4D, this means that some traffic must still be given radar vectors and speed clearances (that is, be spaced by conventional distance separation techniques), while the 4D-equipped aircraft need to be issued time assignments. These apparent differences are reconciled and efficient ATC operation is developed

    Giant Shapiro Resonances in a Flux Driven Josephson Junction Necklace

    Full text link
    We present a detailed study of the dynamic response of a ring of NN equally spaced Josephson junctions to a time-periodic external flux, including screening current effects. The dynamics are described by the resistively shunted Josephson junction model, appropriate for proximity effect junctions, and we include Faraday's law for the flux. We find that the time-averaged IVI-V characteristics show novel {\em subharmonic giant Shapiro voltage resonances}, which strongly depend on having phase slips or not, on NN, on the inductance and on the external drive frequency. We include an estimate of the possible experimental parameters needed to observe these quantized voltage spikes.Comment: 8 pages RevTeX, 3 figures available upon reques

    Solid rocket booster thermal radiation model, volume 1

    Get PDF
    A solid rocket booster (SRB) thermal radiation model, capable of defining the influence of the plume flowfield structure on the magnitude and distribution of thermal radiation leaving the plume, was prepared and documented. Radiant heating rates may be calculated for a single SRB plume or for the dual SRB plumes astride the space shuttle. The plumes may be gimbaled in the yaw and pitch planes. Space shuttle surface geometries are simulated with combinations of quadric surfaces. The effect of surface shading is included. The computer program also has the capability to calculate view factors between the SRB plumes and space shuttle surfaces as well as surface-to-surface view factors
    corecore