3,719 research outputs found
Multiwavelength analysis of the Lyman alpha emitting galaxy Haro 2: relation between the diffuse Lyman alpha and soft X-ray emissions
In order to use Lyman alpha (Lya) emission as star formation tracer in
cosmological studies, we must understand how the resonant scattering affects
the escape fraction of the Lya photons. Thus, high spatial resolution
multiwavelength studies of nearby Lya emitters, like Haro 2, are highly needed.
For that purpose, we have used Chandra X-ray and HST (UV, optical and NIR)
images of Haro 2, and STIS and ground-based spectral images along its major and
minor axes, to characterize the Lya emission and the properties of the stellar
population. The UV, Ha (Halpha) and FIR luminosities of the Haro 2 nuclear
starburst are reproduced using evolutionary synthesis models assuming a young
stellar population with ages ~3.5-5.0 Myr, affected by differential
interstellar extinctions. The observed X-ray emission is attributed to gas
heated by the mechanical energy released by the starburst (soft component) and
a Ultra-Luminous X-ray source candidate (hard). Both compact and diffuse Lya
components are observed. Whereas Lya is spatially decoupled from Balmer lines
emission, Balmer decrement and UV continuum, the diffuse Lya component is
spatially correlated with the diffuse soft X-ray emission. Moreover, unlike the
compact one, diffuse Lya shows luminosities larger than predicted from Ha,
assuming case B recombination and dust extinction as derived from Ha/Hbeta. We
propose that, whereas the compact Lya emission is associated to the massive
stellar clusters and is affected by outflows and dust extinction, the diffuse
Lya originates in gas ionized by the hot plasma responsible for the soft X-ray
radiation, as suggested by their spatial correlation and by the measured
L(Ha)/LsoftX ratios. Calibration of Lya as star formation rate tracer should
therefore include both effects (destruction vs. enhancement) to avoid biases in
the study of galaxies at cosmological distances.Comment: Accepted for publication in A&A, 18 pages, 8 figures, 9 tables. If
problems with quality of images, see
http://www.cab.inta-csic.es/users/otih/haro2-v63.clean.pd
Physical properties and evolutionary state of the Lyman alpha emitting starburst galaxy IRAS 08339+6517
Though Lyman alpha emission (Lya) is one of the most used tracers of massive
star formation at high redshift, a correct understanding of radiation transfer
effects by neutral gas is required to properly quantify the star formation rate
along the history of the Universe. We are embarked in a program to study the
properties of the Lya emission (spectral profile, spatial distribution,
relation to Balmer lines intensity,...) in several local starburst galaxies. We
present here the results obtained for IRAS 08339+6517.
Using evolutionary population synthesis models, we have characterized the
properties of the starburst (UV continuum, Halpha, total infrared and X-ray
emissions, etc.), which transformed 1.4e+8 Mo of gas into stars around 5-6 Myr
ago. In addition to the central compact emission blob, we have identified a
diffuse Lya emission component smoothly distributed over the whole central area
of IRAS 08339+6517. This diffuse emission is spatially decoupled from the UV
continuum, the Halpha emission or the Halpha/Hbeta ratio. Both locally and
globally, the Lya/Halpha ratio is lower than the Case B predictions, even after
reddening correction, with an overall Lya escape fraction of only 4%.
We conclude that in IRAS 08339+6517 the resonant scattering of Lya photons by
an outflowing shell of neutral gas causes their highly-efficient destruction by
dust, which explains the low Lya escape fraction measured. These results stress
again the importance of a proper correction of scattering and transfer effects
when using Lya to derive the star formation rate in high-redshift galaxies.Comment: Accepted for publication in A&A, 17 pages, 13 figures, 8 tables. If
problems with quality of images, see
https://cloud.cab.inta-csic.es/public.php?service=files&file=%2Fotih%2Ffiles%2Foti_mas%2Firas%2Firas-v53.ack_referee.pd
Conjugacy in Baumslag's group, generic case complexity, and division in power circuits
The conjugacy problem belongs to algorithmic group theory. It is the
following question: given two words x, y over generators of a fixed group G,
decide whether x and y are conjugated, i.e., whether there exists some z such
that zxz^{-1} = y in G. The conjugacy problem is more difficult than the word
problem, in general. We investigate the complexity of the conjugacy problem for
two prominent groups: the Baumslag-Solitar group BS(1,2) and the
Baumslag(-Gersten) group G(1,2). The conjugacy problem in BS(1,2) is
TC^0-complete. To the best of our knowledge BS(1,2) is the first natural
infinite non-commutative group where such a precise and low complexity is
shown. The Baumslag group G(1,2) is an HNN-extension of BS(1,2). We show that
the conjugacy problem is decidable (which has been known before); but our
results go far beyond decidability. In particular, we are able to show that
conjugacy in G(1,2) can be solved in polynomial time in a strongly generic
setting. This means that essentially for all inputs conjugacy in G(1,2) can be
decided efficiently. In contrast, we show that under a plausible assumption the
average case complexity of the same problem is non-elementary. Moreover, we
provide a lower bound for the conjugacy problem in G(1,2) by reducing the
division problem in power circuits to the conjugacy problem in G(1,2). The
complexity of the division problem in power circuits is an open and interesting
problem in integer arithmetic.Comment: Section 5 added: We show that an HNN extension G = < H, b | bab^-1 =
{\phi}(a), a \in A > has a non-amenable Schreier graph with respect to the
base group H if and only if A \neq H \neq
AGN Black Hole Masses and Bolometric Luminosities
Black hole mass, along with mass accretion rate, is a fundamental property of
active galactic nuclei. Black hole mass sets an approximate upper limit to AGN
energetics via the Eddington limit. We collect and compare all AGN black hole
mass estimates from the literature; these 177 masses are mostly based on the
virial assumption for the broad emission lines, with the broad-line region size
determined from either reverberation mapping or optical luminosity. We
introduce 200 additional black hole mass estimates based on properties of the
host galaxy bulges, using either the observed stellar velocity dispersion or
using the fundamental plane relation to infer ; these methods assume
that AGN hosts are normal galaxies. We compare 36 cases for which black hole
mass has been generated by different methods and find, for individual objects,
a scatter as high as a couple of orders of magnitude. The less direct the
method, the larger the discrepancy with other estimates, probably due to the
large scatter in the underlying correlations assumed. Using published fluxes,
we calculate bolometric luminosities for 234 AGNs and investigate the relation
between black hole mass and luminosity. In contrast to other studies, we find
no significant correlation of black hole mass with luminosity, other than those
induced by circular reasoning in the estimation of black hole mass. The
Eddington limit defines an approximate upper envelope to the distribution of
luminosities, but the lower envelope depends entirely on the sample of AGN
included. For any given black hole mass, there is a range in Eddington ratio of
up to three orders of magnitude.Comment: 43 pages with 10 figures. Accepted for publication in Ap
New development: Directly elected mayors in Italy: creating a strong leader doesnât mean creating strong leadership
More than 20 years after their introduction, directly elected mayors are key players in Italian urban governance. This article explains the main effects of this reform on local government systems and provides lessons for other countries considering directly elected mayors
Nuclear activity and massive star formation in the low luminosity AGN NGC4303: Chandra X-ray observations
We present evidence of the co-existence of either an AGN or an ultraluminous
X-ray source (ULX), together with a young super stellar cluster in the 3
central parsecs of NGC4303. The galaxy contains a low luminosity AGN and hosts
a number of starburst regions in a circumnuclear spiral, as well as in the
nucleus itself. A high spatial resolution Chandra image of this source reveals
that the soft X-ray emission traces the ultraviolet nuclear spiral down to a
core, which is unresolved both in soft and hard X-rays. The astrometry of the
X-ray core coincides with the UV core within the Chandra positioning accuracy.
The total X-ray luminosity of the core, 1.5*10^{39} erg/s, is similar to that
from some LINERs or from the weakest Seyferts detected so far. The soft X-rays
in both the core and the extended structure surrounding it can be well
reproduced by evolutionary synthesis models (which include the emission
expected from single stars, the hot diffuse gas, supernova remnants and binary
systems), consistent with the properties of the young stellar clusters
identified in the UV. The hard X-ray tail detected in the core spectrum,
however, most likely requires the presence of an additional source. This
additional source could either be a weak active nucleus black hole or an
ultraluminous X-ray object. The implications of these results are discussed.Comment: 37 pages, 7 figures, ApJ accepte
1,25(OH)2VitD3 supplementation enhances suppression of grass pollen-induced allergic asthma by subcutaneous and sublingual immunotherapy in a mouse model
Allergen specific immunotherapy (AIT) can provide long-term alleviation of symptoms for allergic disease but is hampered by suboptimal efficiency. We and others have previously shown that 1,25(OH)2-VitaminD3 (VitD3) can improve therapeutic efficacy of AIT. However, it is unknown whether VitD3 supplementation has similar effects in sublingual and subcutaneous immunotherapy. Therefore, we aimed to test VitD3 supplementation in both grass pollen (GP) subcutaneous-IT (SCIT) and sublingual-IT (SLIT) in a mouse model for allergic airway inflammation. To this end, GP-sensitized BALB/c mice received GP-SCIT or GP-SLIT with or without 10âng VitD3, followed by intranasal GP challenges and measurement of airway hyperresponsiveness (AHR) and inflammation. VitD3 supplementation of GP-SCIT resulted in enhanced induction of GP-specific (sp)-IgG2a and suppression of spIgE after challenge. In addition, eosinophil numbers were reduced and levels of IL10 and Amphiregulin were increased in lung tissue. In GP-SLIT, VitD3 supplementation resulted in enhanced sp-IgG2a levels in serum, enhanced suppression of eosinophils and increased IL10 levels in lung tissue, as well as suppression of AHR to methacholine. These data show that VitD3 increases efficacy of both SCIT and SLIT, by enhancing induction of blocking antibodies and suppression of airway inflammation, underscoring the relevance of proficient VitD3 levels for successful AIT
Flux and field line conservation in 3--D nonideal MHD flows: Remarks about criteria for 3--D reconnection without magnetic neutral points
We make some remarks on reconnection in plasmas and want to present some
calculations related to the problem of finding velocity fields which conserve
magnetic flux or at least magnetic field lines. Hereby we start from views and
definitions of ideal and non-ideal flows on one hand, and of reconnective and
non-reconnective plasma dynamics on the other hand. Our considerations give
additional insights into the discussion on violations of the frozen--in field
concept which started recently with the papers by Baranov & Fahr (2003a;
2003b). We find a correlation between the nonidealness which is given by a
generalized form of the Ohm's law and a general transporting velocity, which is
field line conserving.Comment: 9 pages, 2 figures, submitted to Solar Physic
The Seyfert-Starburst Connection in X-rays. II. Results and Implications
We present the results of X-ray imaging and spectroscopic analysis of a
sample of Seyfert 2 galaxies that contain starbursts, based on their optical
and UV characteristics. These composite galaxies exhibit extended, soft,
thermal X-ray emission, which we attribute to their starburst components.
Comparing their X-ray and far-infrared properties with ordinary Seyfert and
starburst galaxies, we identify the spectral characteristics of their various
intrinsic emission sources. The observed far-infrared emission of the composite
galaxies may be associated almost exclusively with star formation, rather than
the active nucleus. The ratio of the hard X-ray luminosity to the far-infrared
and [O III] 5007 luminosity distinguishes most of these composite galaxies from
``pure'' Seyfert 2 galaxies, while their total observed hard X-ray luminosity
distinguishes them from ``pure'' starbursts. The hard nuclear X-ray source is
generally heavily absorbed (N_H > 10^{23} cm^{-2}) in the composite galaxies.
Based on these results, we suggest that the interstellar medium of the nuclear
starburst is a significant source of absorption. The majority of the sample are
located in groups or are interacting with other galaxies, which may trigger the
starburst or allow rapid mass infall to the central black hole, or both. We
conclude that starbursts are energetically important in a significant fraction
of active galaxies, and starbursts and active galactic nuclei may be part of a
common evolutionary sequence.Comment: 16 pages including 8 figures and 5 tables; to appear in the ApJ, Mar.
10, 200
- âŠ