55,598 research outputs found
Modelling and measurement accuracy enhancement of flue gas flow using neural networks
This paper discusses the modeling of the flue gas flow in industrial ducts and stacks using artificial neural networks (ANN's). Based upon the individual velocity and other operating conditions, an ANN model has been developed for the measurement of the volume flow rate. The model has been validated by the experiment using a case-study power plant. The results have shown that the model can largely compensate for the nonrepresentativeness of a sampling location and, as a result, the measurement accuracy of the flue gas flow can be significantly improved
Optimization of sensor locations for measurement of flue gas flow in industrial ducts and stacks using neural networks
This paper presents a novel application of neural network modeling in the optimization of sensor locations for the measurement of flue gas flow in industrial ducts and stacks. The proposed neural network model has been validated with an experiment based upon a case-study power plant. The results have shown that the optimized sensor location can be easily determined with this model. The industry can directly benefit from the improvement of measurement accuracy of the flue gas flow in the optimized sensor location and the reduction of manual measurement operation with Pitot tube
A new survivability measure for military communication networks
A new measure for survivability of military communication networks based upon topological structures is presented. The proposed measure can be used to evaluate and enhance the survivability of military communication networks, which is illustrated through case studies. The computer simulation results have shown that the new measure can well reflect the survivability of networks. It can be used as a reliable criterion for estimating the survivability of networks and designing networks with high survivability
Continuous Multipartite Entangled State in Wigner Representation and the Violation of Zukowski-Brukner Inequality
We construct an explicit Wigner function for N-mode squeezed state. Based on
a previous observation that the Wigner function describes correlations in the
joint measurement of the phase-space displaced parity operator, we investigate
the non-locality of multipartite entangled state by the violation of
Zukowski-Brukner N-qubit Bell inequality. We find that quantum predictions for
such squeezed state violate these inequalities by an amount that grows with the
number N.Comment: 5 pages, rewritten version, accepted by Phys. Rev.
Magnetic field splitting of the spin-resonance in CeCoIn5
Neutron scattering in strong magnetic fields is used to show the
spin-resonance in superconducting CeCoIn5 (Tc=2.3 K) is a doublet. The
underdamped resonance (\hbar \Gamma=0.069 \pm 0.019 meV) Zeeman splits into two
modes at E_{\pm}=\hbar \Omega_{0}\pm g\mu_{B} \mu_{0}H with g=0.96 \pm 0.05. A
linear extrapolation of the lower peak reaches zero energy at 11.2 \pm 0.5 T,
near the critical field for the incommensurate "Q-phase" indicating that the
Q-phase is a bose condensate of spin excitons.Comment: 5 pages, 4 figure
Spin resonance in the d-wave superconductor CeCoIn5
Neutron scattering is used to probe antiferromagnetic spin fluctuations in
the d-wave heavy fermion superconductor CeCoIn (T=2.3 K).
Superconductivity develops from a state with slow (=0.3 0.15
meV) commensurate (=(1/2,1/2,1/2)) antiferromagnetic spin
fluctuations and nearly isotropic spin correlations. The characteristic
wavevector in CeCoIn is the same as CeIn but differs from the
incommensurate wavevector measured in antiferromagnetically ordered
CeRhIn. A sharp spin resonance ( meV) at
= 0.60 0.03 meV develops in the superconducting state removing spectral
weight from low-energy transfers. The presence of a resonance peak is
indicative of strong coupling between f-electron magnetism and
superconductivity and consistent with a d-wave gap order parameter satisfying
.Comment: (5 pages, 4 figures, to be published in Phys. Rev. Lett.
- …