41,020 research outputs found

    Certifying isolated singular points and their multiplicity structure

    Get PDF
    This paper presents two new constructions related to singular solutions of polynomial systems. The first is a new deflation method for an isolated singular root. This construc-tion uses a single linear differential form defined from the Jacobian matrix of the input, and defines the deflated system by applying this differential form to the original system. The advantages of this new deflation is that it does not introduce new variables and the increase in the number of equations is linear instead of the quadratic increase of previous methods. The second construction gives the coefficients of the so-called inverse system or dual basis, which defines the multiplicity structure at the singular root. We present a system of equations in the original variables plus a relatively small number of new vari-ables. We show that the roots of this new system include the original singular root but now with multiplicity one, and the new variables uniquely determine the multiplicity structure. Both constructions are "exact", meaning that they permit one to treat all conjugate roots simultaneously and can be used in certification procedures for singular roots and their multiplicity structure with respect to an exact rational polynomial system

    Combined effect of frustration and dimerization in ferrimagnetic chains and square lattice

    Full text link
    Within the zero-temperature linear spin-wave theory we have investigated the effect of frustration and dimerization of a Heisenberg system with alternating spins s1s_{1} and s2s_{2} on one- and two-dimensional lattices. The combined effect most visibly appears in the elementary excitation spectra. In contrast to the ground state energy that decreases with dimerization and increases with frustration, the excitation energies are shown to be suppressed in energy by both dimerization and frustration. The threshold value of frustration that signals a transition from a classical ferrimagnetic state to a spiral state, decreases with dimerization, showing that dimerization further helps in the phase transition. The correlation length and sublattice magnetization decrease with both dimerization and frustration indicating the destruction of the long-range classical ferrimagnetic. The linear spin wave theory shows that in the case of a square lattice, dimerization initially opposes the frustration-led transition to a spiral magnetic state, but then higher magnitudes of lattice deformation facilitate the transition. It also shows that the transition to spiral state is inhibited in a square lattice beyond a certain value of dimerization.Comment: 8 pages, latex, 12 postscript figure

    Single photon absorption by a single quantum emitter

    Full text link
    We show that a three-level lambda quantum emitter with equal spontaneous emission rates on both optically active transitions can absorb an incident light field with a probability approaching unity, provided that the focused light profile matches that of the emitter dipole emission pattern. Even with realistic focusing geometries, our results could find applications in long-distance entanglement of spin qubits.Comment: 4 pages, 4 figure

    Nuclear Spin-Lattice Relaxation in One-Dimensional Heisenberg Ferrimagnets: Three-Magnon versus Raman Processes

    Full text link
    Nuclear spin-lattice relaxation in one-dimensional Heisenberg ferrimagnets is studied by means of a modified spin-wave theory. We consider the second-order process, where a nuclear spin flip induces virtual spin waves which are then scattered thermally via the four-magnon exchange interaction, as well as the first-order process, where a nuclear spin directly interacts with spin waves via the hyperfine interaction. We point out a possibility of the three-magnon relaxation process predominating over the Raman one and suggest model experiments.Comment: to be published in J. Phys. Soc. Jpn. 73, No. 6 (2004

    Dissipation-induced pure Gaussian state

    Full text link
    This paper provides some necessary and sufficient conditions for a generalMarkovian Gaussian master equation to have a unique pure steady state. The conditions are described by simple matrix equations; thus the so-called environment engineering problem for pure-Gaussian-state preparation can be straightforwardly dealt with in the linear algebraic framework. In fact, based on one of those conditions, for an arbitrary given pure Gaussian state,we obtain a complete parametrization of the Gaussian master equation having that state as a unique steady state; this leads to a systematic procedure for engineering a desired dissipative system.We demonstrate some examples including Gaussian cluster states.Comment: 8 page

    Modified spin-wave theory of nuclear magnetic relaxation in one-dimensional quantum ferrimagnets: Three-magnon versus Raman processes

    Full text link
    Nuclear spin-lattice relaxation in one-dimensional Heisenberg ferrimagnets is studied by means of a modified spin-wave theory. Calculating beyond the first-order mechanism, where a nuclear spin directly interacts with spin waves through the hyperfine coupling, we demonstrate that the exchange-scattering-enhanced three-magnon nuclear relaxation may generally predominate over the Raman one with increasing temperature and decreasing field. Recent proton spin-lattice relaxation-time (T_1_) measurements on the ferrimagnetic chain compound NiCu(C_7_H_6_N_2_O_6_)(H_2_O)_3_2H_2_O suggest that the major contribution to 1/T_1_ be made by the three-magnon scattering.Comment: 8 pages, 5 figure
    • …
    corecore