1,090 research outputs found
Dynamical systems approach to G2 cosmology
In this paper we present a new approach for studying the dynamics of
spatially inhomogeneous cosmological models with one spatial degree of freedom.
By introducing suitable scale-invariant dependent variables we write the
evolution equations of the Einstein field equations as a system of autonomous
partial differential equations in first-order symmetric hyperbolic format,
whose explicit form depends on the choice of gauge. As a first application, we
show that the asymptotic behaviour near the cosmological initial singularity
can be given a simple geometrical description in terms of the local past
attractor on the boundary of the scale-invariant dynamical state space. The
analysis suggests the name ``asymptotic silence'' to describe the evolution of
the gravitational field near the cosmological initial singularity.Comment: 28 pages, 3 tables, 1 *.eps figure, LaTeX2e (10pt), matches version
accepted for publication by Classical and Quantum Gravit
Weyssenhoff fluid dynamics in general relativity using a 1+3 covariant approach
The Weyssenhoff fluid is a perfect fluid with spin where the spin of the
matter fields is the source of torsion in an Einstein-Cartan framework. Obukhov
and Korotky showed that this fluid can be described as an effective fluid with
spin in general relativity. A dynamical analysis of such a fluid is performed
in a gauge invariant manner using the 1+3 covariant approach. This yields the
propagation and constraint equations for the set of dynamical variables. A
verification of these equations is performed for the special case of
irrotational flow with zero peculiar acceleration by evolving the constraints.Comment: 20 page
Integrability of irrotational silent cosmological models
We revisit the issue of integrability conditions for the irrotational silent
cosmological models. We formulate the problem both in 1+3 covariant and 1+3
orthonormal frame notation, and show there exists a series of constraint
equations that need to be satisfied. These conditions hold identically for
FLRW-linearised silent models, but not in the general exact non-linear case.
Thus there is a linearisation instability, and it is highly unlikely that there
is a large class of silent models. We conjecture that there are no spatially
inhomogeneous solutions with Weyl curvature of Petrov type I, and indicate
further issues that await clarification.Comment: Minor corrections and improvements; 1 new reference; to appear Class.
Quantum Grav.; 16 pages Ioplpp
Conformal regularization of Einstein's field equations
To study asymptotic structures, we regularize Einstein's field equations by
means of conformal transformations. The conformal factor is chosen so that it
carries a dimensional scale that captures crucial asymptotic features. By
choosing a conformal orthonormal frame we obtain a coupled system of
differential equations for a set of dimensionless variables, associated with
the conformal dimensionless metric, where the variables describe ratios with
respect to the chosen asymptotic scale structure. As examples, we describe some
explicit choices of conformal factors and coordinates appropriate for the
situation of a timelike congruence approaching a singularity. One choice is
shown to just slightly modify the so-called Hubble-normalized approach, and one
leads to dimensionless first order symmetric hyperbolic equations. We also
discuss differences and similarities with other conformal approaches in the
literature, as regards, e.g., isotropic singularities.Comment: New title plus corrections and text added. To appear in CQ
Local freedom in the gravitational field
In a cosmological context, the electric and magnetic parts of the Weyl
tensor, E_{ab} and H_{ab}, represent the locally free curvature - i.e. they are
not pointwise determined by the matter fields. By performing a complete
covariant decomposition of the derivatives of E_{ab} and H_{ab}, we show that
the parts of the derivative of the curvature which are locally free (i.e. not
pointwise determined by the matter via the Bianchi identities) are exactly the
symmetrised trace-free spatial derivatives of E_{ab} and H_{ab} together with
their spatial curls. These parts of the derivatives are shown to be crucial for
the existence of gravitational waves.Comment: New results on gravitational waves included; new references added;
revised version (IOP style) to appear Class. Quantum Gra
New explicit spike solution -- non-local component of the generalized Mixmaster attractor
By applying a standard solution-generating transformation to an arbitrary
vacuum Bianchi type II solution, one generates a new solution with spikes
commonly observed in numerical simulations. It is conjectured that the spike
solution is part of the generalized Mixmaster attractor.Comment: Significantly revised. Colour figures simplified to accommodate
non-colour printin
- …
