45,707 research outputs found
Self-Organization of Balanced Nodes in Random Networks with Transportation Bandwidths
We apply statistical physics to study the task of resource allocation in
random networks with limited bandwidths along the transportation links. The
mean-field approach is applicable when the connectivity is sufficiently high.
It allows us to derive the resource shortage of a node as a well-defined
function of its capacity. For networks with uniformly high connectivity, an
efficient profile of the allocated resources is obtained, which exhibits
features similar to the Maxwell construction. These results have good
agreements with simulations, where nodes self-organize to balance their
shortages, forming extensive clusters of nodes interconnected by unsaturated
links. The deviations from the mean-field analyses show that nodes are likely
to be rich in the locality of gifted neighbors. In scale-free networks, hubs
make sacrifice for enhanced balancing of nodes with low connectivity.Comment: 7 pages, 8 figure
Antipersistant Effects in the Dynamics of a Competing Population
We consider a population of agents competing for finite resources using
strategies based on two channels of signals. The model is applicable to
financial markets, ecosystems and computer networks. We find that the dynamics
of the system is determined by the correlation between the two channels. In
particular, occasional mismatches of the signals induce a series of transitions
among numerous attractors. Surprisingly, in contrast to the effects of noises
on dynamical systems normally resulting in a large number of attractors, the
number of attractors due to the mismatched signals remains finite. Both
simulations and analyses show that this can be explained by the antipersistent
nature of the dynamics. Antipersistence refers to the response of the system to
a given signal being opposite to that of the signal's previous occurrence, and
is a consequence of the competition of the agents to make minority decisions.
Thus, it is essential for stabilizing the dynamical systems.Comment: 4 pages, 6 figure
Cascades of Dynamical Transitions in an Adaptive Population
In an adaptive population which models financial markets and distributed
control, we consider how the dynamics depends on the diversity of the agents'
initial preferences of strategies. When the diversity decreases, more agents
tend to adapt their strategies together. This change in the environment results
in dynamical transitions from vanishing to non-vanishing step sizes. When the
diversity decreases further, we find a cascade of dynamical transitions for the
different signal dimensions, supported by good agreement between simulations
and theory. Besides, the signal of the largest step size at the steady state is
likely to be the initial signal.Comment: 4 pages, 8 figure
Highlights of the TEXONO Research Program on Neutrino and Astroparticle Physics
This article reviews the research program and efforts for the TEXONO
Collaboration on neutrino and astro-particle physics. The ``flagship'' program
is on reactor-based neutrino physics at the Kuo-Sheng (KS) Power Plant in
Taiwan. A limit on the neutrino magnetic moment of \munuebar < 1.3 X 10^{-10}
\mub} at 90% confidence level was derived from measurements with a high purity
germanium detector. Other physics topics at KS, as well as the various R&D
program, are discussedComment: 10 pages, 9 figures, Proceedings of the International Symposium on
Neutrino and Dark Matter in Nuclear Physics (NDM03), Nara, Japan, June 9-14,
200
Electronic visualization of gas bearing behavior
Visualization technique produces a visual simulation of gas bearing operation by electronically combining the outputs from the clearance probes used to monitor bearing component motion. Computerized recordings of the probes output are processed, displayed on an oscilloscope screen and recorded with a high-speed motion picture camera
Models of Financial Markets with Extensive Participation Incentives
We consider models of financial markets in which all parties involved find
incentives to participate. Strategies are evaluated directly by their virtual
wealths. By tuning the price sensitivity and market impact, a phase diagram
with several attractor behaviors resembling those of real markets emerge,
reflecting the roles played by the arbitrageurs and trendsetters, and including
a phase with irregular price trends and positive sums. The positive-sumness of
the players' wealths provides participation incentives for them. Evolution and
the bid-ask spread provide mechanisms for the gain in wealth of both the
players and market-makers. New players survive in the market if the
evolutionary rate is sufficiently slow. We test the applicability of the model
on real Hang Seng Index data over 20 years. Comparisons with other models show
that our model has a superior average performance when applied to real
financial data.Comment: 17 pages, 16 figure
- …