506 research outputs found

    BlogForever D3.2: Interoperability Prospects

    Get PDF
    This report evaluates the interoperability prospects of the BlogForever platform. Therefore, existing interoperability models are reviewed, a Delphi study to identify crucial aspects for the interoperability of web archives and digital libraries is conducted, technical interoperability standards and protocols are reviewed regarding their relevance for BlogForever, a simple approach to consider interoperability in specific usage scenarios is proposed, and a tangible approach to develop a succession plan that would allow a reliable transfer of content from the current digital archive to other digital repositories is presented

    Gauge transformations of the non-Abelian two-form

    Get PDF
    A novel inhomogeneous gauge transformation law is proposed for a non-Abelian adjoint two-form in four dimensions. Rules for constructing actions invariant under this are given. The auxiliary vector field which appears in some of these models transforms like a second connection in the theory. Another local symmetry leaves the compensated three-form field strength invariant, but does not seem to be generated by any combination of local constraints. Both types of symmetries change the action by total divergences, suggesting that boundary degrees of freedom have to be taken into account for local quantization.Comment: ReVTeX3.1, 4 page

    Gauge Theory of the String Geodesic Field

    Full text link
    A relativistic string is usually represented by the Nambu-Goto action in terms of the extremal area of a 2-dimensional timelike submanifold of Minkowski space. Alternatively, a family of classical solutions of the string equation of motion can be globally described in terms of the associated geodesic field. In this paper we propose a new gauge theory for the geodesic field of closed and open strings. Our approach solves the technical and conceptual problems affecting previous attempts to describe strings in terms of local field variables. The connection between the geodesic field, the string current and the Kalb-Ramond gauge potential is discussed and clarified. A non-abelian generalization and the generally covariant form of the model are also discussed.Comment: 38 pages, PHYZZX, UTS-DFT-92-2

    PTEN self-regulates through USP11 via the PI3K-FOXO pathway to stabilize tumor suppression

    Get PDF
    PTEN is a lipid phosphatase that functions as a dose-dependent tumor suppressor through the PI3K/AKT pathway. Here the authors describe a signaling feedback mechanism where PTEN stability is regulated through transcriptional upregulation of X-linked ubiquitin-specific protease 11 (USP11) via the PI3K/FOXO pathway

    Kalb-Ramond excitations in a thick-brane scenario with dilaton

    Full text link
    We compute the full spectrum and eigenstates of the Kalb-Ramond field in a warped non-compact Randall-Sundrum -type five-dimensional spacetime in which the ordinary four-dimensional braneworld is represented by a sine-Gordon soliton. This 3-brane solution is fully consistent with both the warped gravitational field and bulk dilaton configurations. In such a background we embed a bulk antisymmetric tensor field and obtain, after reduction, an infinite tower of normalizable Kaluza-Klein massive components along with a zero-mode. The low lying mass eigenstates of the Kalb-Ramond field may be related to the axion pseudoscalar. This yields phenomenological implications on the space of parameters, particularly on the dilaton coupling constant. Both analytical and numerical results are given.Comment: 10 pages, 13 figures, and 2 tables. Final version to appear in The European Physical Journal

    A Nonabelian Yang-Mills Analogue of Classical Electromagnetic Duality

    Get PDF
    The classic question of a nonabelian Yang-Mills analogue to electromagnetic duality is here examined in a minimalist fashion at the strictly 4-dimensional, classical field and point charge level. A generalisation of the abelian Hodge star duality is found which, though not yet known to give dual symmetry, reproduces analogues to many dual properties of the abelian theory. For example, there is a dual potential, but it is a 2-indexed tensor TΌΜT_{\mu\nu} of the Freedman-Townsend type. Though not itself functioning as such, TΌΜT_{\mu\nu} gives rise to a dual parallel transport, A~ÎŒ\tilde{A}_\mu, for the phase of the wave function of the colour magnetic charge, this last being a monopole of the Yang-Mills field but a source of the dual field. The standard colour (electric) charge itself is found to be a monopole of A~ÎŒ\tilde{A}_\mu. At the same time, the gauge symmetry is found doubled from say SU(N)SU(N) to SU(N)×SU(N)SU(N) \times SU(N). A novel feature is that all equations of motion, including the standard Yang-Mills and Wong equations, are here derived from a `universal' principle, namely the Wu-Yang (1976) criterion for monopoles, where interactions arise purely as a consequence of the topological definition of the monopole charge. The technique used is the loop space formulation of Polyakov (1980).Comment: We regret that, due to a technical hitch, parts of the reference list were mixed up. This is the corrected version. We apologize to the authors whose papers were misquote

    Studies of the motion and decay of axion walls bounded by strings

    Get PDF
    We discuss the appearance at the QCD phase transition, and the subsequent decay, of axion walls bounded by strings in N=1 axion models. We argue on intuitive grounds that the main decay mechanism is into barely relativistic axions. We present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is ≃7ma \simeq 7 m_a for va/ma≃500v_a/m_a \simeq 500. is found to increase approximately linearly with ln⁥(va/ma)\ln(v_a/m_a). Extrapolation of this behaviour yields ∌60ma \sim 60 m_a in axion models of interest. We find that the contribution to the cosmological energy density of axions from wall decay is of the same order of magnitude as that from vacuum realignment, with however large uncertainties. The velocity dispersion of axions from wall decay is found to be larger, by a factor 10310^3 or so, than that of axions from vacuum realignment and string decay. We discuss the implications of this for the formation and evolution of axion miniclusters and for the direct detection of axion dark matter on Earth. Finally we discuss the cosmology of axion models with N>1N>1 in which the domain wall problem is solved by introducing a small UPQ_{PQ}(1) breaking interaction. We find that in this case the walls decay into gravitational waves.Comment: 37 pages, 10 figures, a minor mistake was corrected, several references and comments were adde

    Vacuum Structure and the Axion Walls in Gluodynamics and QCD with Light Quarks

    Get PDF
    Large N gluodynamics was shown to have a set of metastable vacua with the gluonic domain walls interpolating between them. The walls may separate the genuine vacuum from an excited one, or two excited vacua which are unstable at finite N (here N is the number of colors). One may attempt to stabilize them by switching on the axion field. We study how the light quarks and the axion affect the structure of the domain walls. In pure gluodynamics (with the axion field) the axion walls acquire a very hard gluonic core. Thus, we deal with a wall "sandwich" which is stable at finite N. In the case of the minimal axion, the wall "sandwich" is in fact a "2-pi" wall, i.e., the corresponding field configuration interpolates between identical hadronic vacua. The same properties hold in QCD with three light quarks and very large number of colors. However, in the realistic case of three-color QCD the phase corresponding to the axion field profile in the axion wall is screened by a dynamical phase associated with the eta-prime, so that the gluon component of the wall is not excited. We propose a toy Lagrangian which models these properties and allows one to get exact solutions for the domain walls.Comment: 22 pages Latex, no figure

    Localized D-dimensional global k-defects

    Full text link
    We explicitly demonstrate the existence of static global defect solutions of arbitrary dimensionality whose energy does not diverge at spatial infinity, by considering maximally symmetric solutions described by an action with non-standard kinetic terms in a D+1 dimensional Minkowski space-time. We analytically determine the defect profile both at small and large distances from the defect centre. We verify the stability of such solutions and discuss possible implications of our findings, in particular for dark matter and charge fractionalization in graphene.Comment: 6 pages, published versio

    Differential geometry construction of anomalies and topological invariants in various dimensions

    Full text link
    In the model of extended non-Abelian tensor gauge fields we have found new metric-independent densities: the exact (2n+3)-forms and their secondary characteristics, the (2n+2)-forms as well as the exact 6n-forms and the corresponding secondary (6n-1)-forms. These forms are the analogs of the Pontryagin densities: the exact 2n-forms and Chern-Simons secondary characteristics, the (2n-1)-forms. The (2n+3)- and 6n-forms are gauge invariant densities, while the (2n+2)- and (6n-1)-forms transform non-trivially under gauge transformations, that we compare with the corresponding transformations of the Chern-Simons secondary characteristics. This construction allows to identify new potential gauge anomalies in various dimensions.Comment: 27 pages, references added, matches published versio
    • 

    corecore