460 research outputs found

    The import receptor for the peroxisomal targeting signal 2 (PTS2) in Saccharomyces cerevisiae is encoded by the PAS7 gene

    Get PDF
    The import of peroxisomal matrix proteins is dependent on one of two targeting signals, PTS1 and PTS2. We demonstrate in vivo that not only the import of thiolase but also that of a chimeric protein consisting of the thiolase PTS2 (amino acids 1-18) fused to the bacterial protein β-lactamase is Pas7p dependent. In addition, using a combination of several independent approaches (two-hybrid system, co-immunoprecipitation, affinity chromatography and high copy suppression), we show that Pas7p specifically interacts with thiolase in vivo and in vitro. For this interaction, the N-terminal PTS2 of thiolase is both necessary and sufficient. The specific binding of Pas7p to thiolase does not require peroxisomes. Pas7p recognizes the PTS2 of thiolase even when this otherwise N-terminal targeting signal is fused to the C-terminus of other proteins, i.e. the activation domain of Gal4p or GST. These results demonstrate that Pas7p is the targeting signal-specific receptor of thiolase in Saccharomyces cerevisiae and, moreover, are consistent with the view that Pas7p is the general receptor of the PTS2. Our observation that Pas7p also interacts with the human peroxisomal thiolase suggests that in the human peroxisomal disorders characterized by an import defect for PTS2 proteins (classical rhizomelic chondrodysplasia punctata), a functional homologue of Pas7p may be impaired

    Induction of Apoptosis in Small-Cell Lung Cancer Cells by an Antisense Oligodeoxynucleotide Targeting the Bcl-2 Coding Sequence

    Get PDF
    Background: The emergence of resistance to chemotherapy remains a major problem in the treatment of patients with small-cell lung cancer. Elevated expression of Bcl-2, a protein that inhibits programmed cell death or apoptosis, has been associated with radiation and drug resistance and has been observed in the majority of small-cell lung cancer specimens and cell lines. Purpose: To test the hypothesis that Bcl-2 expression levels are critical for inhibiting apoptosis in small-cell lung cancer cells, we used an antisense strategy to reduce Bcl-2 expression in these cells in an attempt to restore the natural occurrence of apoptosis. Methods: Thirteen antisense oligodeoxynucleotides (ODNs) targeting various regions of the bcl-2 messenger RNA and a control scrambledsequence ODN were tested to identify the most effective sequence(s) for reducing Bcl-2 protein levels. Northern and western blot analyses were used to examine basal bcl-2 messenger RNA and protein levels, respectively, in four human small-cell lung cancer cell lines (SW2, NCI-H69, NCI-H82, and NCI-N417). SW2 cells were treated with the antisense ODNs in the presence of cationic lipids (to facilitate uptake), and cytotoxic effects were measured by use of a cell viability assay. Flow cytometric analysis of DNA fragmentation and cell morphology was also performed. The cytotoxic effect of the most potent antisense ODN was also tested on the three other cell lines. Results: The viability of SW2 cells was effectively reduced by ODNs that targeted the translation initiation and termination sites of the bcl-2 messenger RNA, but ODN 2009 that targeted the coding region was the most cytotoxic. Treatment of SW2 cells with 0.15 µM ODN 2009 for 96 hours reduced their viability by 91% (95% confidence interval [CI] = 88%-94%) and caused a dose-dependent reduction in Bcl-2 levels that became detectable 24 hours after treatment and persisted up to 96 hours; analysis of cellular morphology demonstrated that viability was reduced through apoptosis. Moreover, ODN 2009 at 0.15 µM was cytotoxic to NCI-H69, NCI-H82, and NCI-N417 cells, resulting in decreases in cell viability of 82% (95% CI = 78%- 86%), 100%, and 100%, respectively, after 96 hours of treatment. The cytotoxic effects were inversely correlated with the basal Bcl-2 levels in the cell lines (r = −.9964). A control scrambled-sequence oligodeoxynucleotide had no statistically significant effect on the cell lines (P values ranging from .38 to .89). Conclusion: We have identified a novel antisense ODN sequence (ODN 2009) that effectively reduces the viability of small-cell lung cancer cells by reducing Bcl-2 levels and facilitating apoptosi

    Activity of a Novel bcl-2/bcl-xL-Bispecific Antisense Oligonucleotide Against Tumors of Diverse Histologic Origins

    Get PDF
    Background: Increased expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL is involved in the development and progression of many tumors. We recently reported that the bcl-2/bcl-xL-bispecific antisense oligonucleotide 4625 induces apoptosis in lung carcinoma cells. To further assess the therapeutic potential of oligonucleotide 4625, we investigated its effect on a series of human tumor cell lines of diverse histologic origins in vitro and in vivo. Methods: Oligonucleotide 4625-mediated inhibition of bcl-2 and bcl-xL expression in vitro was measured in breast carcinoma cells with the use of reverse transcription-polymerase chain reaction (PCR), real-time PCR, and western blotting. Cytotoxicity was assessed in several different cell lines by measurement of tumor cell growth, propidium iodide uptake, and nuclear apoptosis. The in vivo activity of oligonucleotide 4625 was determined by the inhibition of growth of established tumor xenografts in nude mice, immunohistochemical staining of Bcl-2 and Bcl-x proteins in the tumors, and western blotting of tumor lysates. Apoptosis in tumor xenografts was detected with the use of in situ TUNEL (i.e., terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick end labeling) staining. All statistical tests are two-sided. Results: In breast carcinoma cells, oligonucleotide 4625 treatment reduced bcl-2 and bcl-xL messenger RNA levels in a dose-dependent manner. At 600 nM, oligonucleotide 4625 reduced Bcl-2 and Bcl-xL protein levels to 25% (95% confidence interval [CI] = 16% to 34%) and 20% (95% CI = 14% to 26%), respectively, of the levels in untreated cells and it decreased viability in all cell lines mainly by inducing apoptosis. In vivo, oligonucleotide 4625 statistically significantly inhibited the growth of breast and colorectal carcinoma xenografts by 51% (95% CI = 28% to 74%) and 59% (95% CI = 44% to 74%), respectively, relative to those treated with control oligonucleotide 4626; it also reduced Bcl-2 and Bcl-xL protein levels and induced tumor cell apoptosis. Conclusion: The bcl-2/bcl-xL-bispecific antisense oligonucleotide 4625 merits further study as a novel compound for cancer therap

    Inflammation-associated Cell Cycle–independent Block of Apoptosis by Survivin in Terminally Differentiated Neutrophils

    Get PDF
    Survivin has received great attention due to its expression in many human tumors and its potential as a therapeutic target in cancer. Survivin expression has been described to be cell cycle–dependent and restricted to the G2-M checkpoint, where it inhibits apoptosis in proliferating cells. In agreement with this current view, we found that survivin expression was high in immature neutrophils, which proliferate during differentiation. In contrast with immature cells, mature neutrophils contained only little or no survivin protein. Strikingly, these cells reexpressed survivin upon granulocyte/macrophage colony-stimulating factor (CSF) or granulocyte CSF stimulation in vitro and under inflammatory conditions in vivo. Moreover, survivin-deficient mature neutrophils were unable to increase their lifespan after survival factor exposure. Together, our findings demonstrate the following: (a) overexpression of survivin occurs in primary, even terminally differentiated cells and is not restricted to proliferating cells; and (b) survivin acts as an inhibitor of apoptosis protein in a cell cycle–independent manner. Therefore, survivin plays distinct and independent roles in the maintenance of the G2-M checkpoint and in apoptosis control, and its overexpression is not restricted to proliferating cells. These data provide new insights into the regulation and function of survivin and have important implications for the pathogenesis, diagnosis, and treatment of inflammatory diseases and cancer
    • …
    corecore