709 research outputs found

    Anyons on Higher Genus Surfaces - a Constructive Approach

    Full text link
    We reconsider the problem of anyons on higher genus surfaces by embedding them in three dimensional space. From a concrete realization based on three dimensional flux tubes bound to charges moving on the surface, we explicitly derive all the representations of the spinning braid group. The component structure of the wave functions arises from winding the flux tubes around the handles. We also argue that the anyons in our construction must fulfil the generalized spin-statistics relation.Comment: 8 pages, LaTex, 2 figures available on request ([email protected]), USITP-93-1

    Monte Carlo Study of the Separation of Energy Scales in Quantum Spin 1/2 Chains with Bond Disorder

    Full text link
    One-dimensional Heisenberg spin 1/2 chains with random ferro- and antiferromagnetic bonds are realized in systems such as Sr3CuPt1−xIrxO6Sr_3 CuPt_{1-x} Ir_x O_6. We have investigated numerically the thermodynamic properties of a generic random bond model and of a realistic model of Sr3CuPt1−xIrxO6Sr_3 CuPt_{1-x} Ir_x O_6 by the quantum Monte Carlo loop algorithm. For the first time we demonstrate the separation into three different temperature regimes for the original Hamiltonian based on an exact treatment, especially we show that the intermediate temperature regime is well-defined and observable in both the specific heat and the magnetic susceptibility. The crossover between the regimes is indicated by peaks in the specific heat. The uniform magnetic susceptibility shows Curie-like behavior in the high-, intermediate- and low-temperature regime, with different values of the Curie constant in each regime. We show that these regimes are overlapping in the realistic model and give numerical data for the analysis of experimental tests.Comment: 7 pages, 5 eps-figures included, typeset using JPSJ.sty, accepted for publication in J. Phys. Soc. Jpn. 68, Vol. 3. (1999

    Low-Temperature Scaling Regime of Random Ferromagnetic-Antiferromagnetic Spin Chains

    Full text link
    Using the Continuous Time Quantum Monte Carlo Loop algorithm, we calculate the temperature dependence of the uniform susceptibility, and the specific heat of a spin-1/2 chain with random antiferromagnetic and ferromagnetic couplings, down to very low temperatures. Our data show a consistent scaling behavior in both quantities and support strongly the conjecture drawn from the approximative real-space renormalization group treatment. A statistical analysis scheme is developed which will be useful for the search scaling behavior in numerical and experimental data of random spin chains.Comment: 4 pages and 3 figure

    Beyond the Ubiquitous Relapse Curve: A Data-Informed Approach

    Get PDF
    Relapse to alcohol and other substances has generally been described by curves that resemble one another. However, these curves have been generated from the time to first use after a period of abstinence without regard to the movement of individuals into and out of drug use. Instead of measuring continuous abstinence, we considered post-treatment functioning as a more complicated phenomenon, describing how people move in and out of drinking states on a monthly basis over the course of a year. When we looked at time to first drink we observed the ubiquitous relapse curve. When we classified clients (N = 550) according to drinking state however, they frequently moved from one state to another with both abstinent and very heavy drinking states as being rather stable, and light or moderate drinking and heavy drinking being unstable. We found that clients with a family history of alcoholism were less likely to experience these unstable states. When we examined the distribution of cases crossed by the number of times clients switched states we found that a power function explained 83% of that relationship. Some of the remainder of the variance seems to be explained by the stable states of very heavy drinking and abstinence acting as attractors

    Spin Waves in Random Spin Chains

    Full text link
    We study quantum spin-1/2 Heisenberg ferromagnetic chains with dilute, random antiferromagnetic impurity bonds with modified spin-wave theory. By describing thermal excitations in the language of spin waves, we successfully observe a low-temperature Curie susceptibility due to formation of large spin clusters first predicted by the real-space renormalization-group approach, as well as a crossover to a pure ferromagnetic spin chain behavior at intermediate and high temperatures. We compare our results of the modified spin-wave theory to quantum Monte Carlo simulations.Comment: 3 pages, 3 eps figures, submitted to the 47th Conference on Magnetism and Magnetic Material

    Kaon Condensation in the Bound-State Approach to the Skyrme Model

    Full text link
    We explore kaon condensation using the bound-state approach to the Skyrme model on a 3-sphere. The condensation occurs when the energy required to produce a K−K^- falls below the electron fermi level. This happens at the baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and uuencode

    TWINLATIN: Twinning European and Latin-American river basins for research enabling sustainable water resources management. Combined Report D3.1 Hydrological modelling report and D3.2 Evaluation report

    Get PDF
    Water use has almost tripled over the past 50 years and in some regions the water demand already exceeds supply (Vorosmarty et al., 2000). The world is facing a “global water crisis”; in many countries, current levels of water use are unsustainable, with systems vulnerable to collapse from even small changes in water availability. The need for a scientifically-based assessment of the potential impacts on water resources of future changes, as a basis for society to adapt to such changes, is strong for most parts of the world. Although the focus of such assessments has tended to be climate change, socio-economic changes can have as significant an impact on water availability across the four main use sectors i.e. domestic, agricultural, industrial (including energy) and environmental. Withdrawal and consumption of water is expected to continue to grow substantially over the next 20-50 years (Cosgrove & Rijsberman, 2002), and consequent changes in availability may drastically affect society and economies. One of the most needed improvements in Latin American river basin management is a higher level of detail in hydrological modelling and erosion risk assessment, as a basis for identification and analysis of mitigation actions, as well as for analysis of global change scenarios. Flow measurements are too costly to be realised at more than a few locations, which means that modelled data are required for the rest of the basin. Hence, TWINLATIN Work Package 3 “Hydrological modelling and extremes” was formulated to provide methods and tools to be used by other WPs, in particular WP6 on “Pollution pressure and impact analysis” and WP8 on “Change effects and vulnerability assessment”. With an emphasis on high and low flows and their impacts, WP3 was originally called “Hydrological modelling, flooding, erosion, water scarcity and water abstraction”. However, at the TWINLATIN kick-off meeting it was agreed that some of these issues resided more appropriately in WP6 and WP8, and so WP3 was renamed to focus on hydrological modelling and hydrological extremes. The specific objectives of WP3 as set out in the Description of Work are

    Multiplicity of Gamma-Ray Transitions Observed in Lithium-Induced Reactions

    Get PDF
    This work was supported by National Science Foundation Grant PHY 76-84033 and Indiana Universit

    Strong disorder renormalization group on fractal lattices: Heisenberg models and magnetoresistive effects in tight binding models

    Full text link
    We use a numerical implementation of the strong disorder renormalization group (RG) method to study the low-energy fixed points of random Heisenberg and tight-binding models on different types of fractal lattices. For the Heisenberg model new types of infinite disorder and strong disorder fixed points are found. For the tight-binding model we add an orbital magnetic field and use both diagonal and off-diagonal disorder. For this model besides the gap spectra we study also the fraction of frozen sites, the correlation function, the persistent current and the two-terminal current. The lattices with an even number of sites around each elementary plaquette show a dominant ϕ0=h/e\phi_0=h/e periodicity. The lattices with an odd number of sites around each elementary plaquette show a dominant ϕ0/2\phi_0/2 periodicity at vanishing diagonal disorder, with a positive weak localization-like magnetoconductance at infinite disorder fixed points. The magnetoconductance with both diagonal and off-diagonal disorder depends on the symmetry of the distribution of on-site energies.Comment: 19 pages, 20 figure

    Density Matrix Renormalization Group Study of the Haldane Phase in Random One-Dimensional Antiferromagnets

    Get PDF
    It is conjectured that the Haldane phase of the S=1 antiferromagnetic Heisenberg chain and the S=1/2S=1/2 ferromagnetic-antiferromagnetic alternating Heisenberg chain is stable against any strength of randomness, because of imposed breakdown of translational symmetry. This conjecture is confirmed by the density matrix renormalization group calculation of the string order parameter and the energy gap distribution.Comment: 4 Pages, 7 figures; Considerable revisions are made in abstract and main text. Final accepted versio
    • 

    corecore