6,195 research outputs found

    Light-cone coordinates based at a geodesic world line

    Get PDF
    Continuing work initiated in an earlier publication [Phys. Rev. D 69, 084007 (2004)], we construct a system of light-cone coordinates based at a geodesic world line of an arbitrary curved spacetime. The construction involves (i) an advanced-time or a retarded-time coordinate that labels past or future light cones centered on the world line, (ii) a radial coordinate that is an affine parameter on the null generators of these light cones, and (iii) angular coordinates that are constant on each generator. The spacetime metric is calculated in the light-cone coordinates, and it is expressed as an expansion in powers of the radial coordinate in terms of the irreducible components of the Riemann tensor evaluated on the world line. The formalism is illustrated in two simple applications, the first involving a comoving world line of a spatially-flat cosmology, the other featuring an observer placed on the axis of symmetry of Melvin's magnetic universe.Comment: 11 pages, 1 figur

    Lightcone reference for total gravitational energy

    Get PDF
    We give an explicit expression for gravitational energy, written solely in terms of physical spacetime geometry, which in suitable limits agrees with the total Arnowitt-Deser-Misner and Trautman-Bondi-Sachs energies for asymptotically flat spacetimes and with the Abbot-Deser energy for asymptotically anti-de Sitter spacetimes. Our expression is a boundary value of the standard gravitational Hamiltonian. Moreover, although it stands alone as such, we derive the expression by picking the zero-point of energy via a ``lightcone reference.''Comment: latex, 7 pages, no figures. Uses an amstex symbo

    Gravitational Waves in the Nonsymmetric Gravitational Theory

    Get PDF
    We prove that the flux of gravitational radiation from an isolated source in the Nonsymmetric Gravitational Theory is identical to that found in Einstein's General Theory of Relativity.Comment: 10 Page

    Complete null data for a black hole collision

    Get PDF
    We present an algorithm for calculating the complete data on an event horizon which constitute the necessary input for characteristic evolution of the exterior spacetime. We apply this algorithm to study the intrinsic and extrinsic geometry of a binary black hole event horizon, constructing a sequence of binary black hole event horizons which approaches a single Schwarzschild black hole horizon as a limiting case. The linear perturbation of the Schwarzschild horizon provides global insight into the close limit for binary black holes, in which the individual holes have joined in the infinite past. In general there is a division of the horizon into interior and exterior regions, analogous to the division of the Schwarzschild horizon by the r=2M bifurcation sphere. In passing from the perturbative to the strongly nonlinear regime there is a transition in which the individual black holes persist in the exterior portion of the horizon. The algorithm is intended to provide the data sets for production of a catalog of nonlinear post-merger wave forms using the PITT null code.Comment: Revised version, to appear in Phys. Rev. D. July 15 (2001), 41 pages, 11 figures, RevTeX/epsf/psfi

    Quantum gravitational optics: Effective Raychaudhuri equation

    Get PDF
    Vacuum polarization in QED in a background gravitational field induces interactions which {\it effectively} modify the classical picture of light rays, as the null geodesics of spacetime. These interactions violate the strong equivalence principle and affect the propagation of light leading to superluminal photon velocities. Taking into account the QED vacuum polarization, we study the propagation of a bundle of rays in a background gravitational field. To do so we consider the perturbative deformation of Raychaudhuri equation through the influence of vacuum polarization on photon propagation. We analyze the contribution of the above interactions to the optical scalars namely, shear, vorticity and expansion using the Newman-Penrose formalism.Comment: 17 pages, 1 figure, RevTex format, Replaced with the published versio

    Flight Mechanics of a Tail-less Articulated Wing Aircraft

    Get PDF
    This paper explores the flight mechanics of a Micro Aerial Vehicle (MAV) without a vertical tail. The key to stability and control of such an aircraft lies in the ability to control the twist and dihedral angles of both wings independently. Specifically, asymmetric dihedral can be used to control yaw whereas antisymmetric twist can be used to control roll. It has been demonstrated that wing dihedral angles can regulate sideslip and speed during a turn maneuver. The role of wing dihedral in the aircraft's longitudinal performance has been explored. It has been shown that dihedral angle can be varied symmetrically to achieve limited control over aircraft speed even as the angle of attack and flight path angle are varied. A rapid descent and perching maneuver has been used to illustrate the longitudinal agility of the aircraft. This paper lays part of the foundation for the design and stability analysis of an agile flapping wing aircraft capable of performing rapid maneuvers while gliding in a constrained environment

    Ruled Laguerre minimal surfaces

    Full text link
    A Laguerre minimal surface is an immersed surface in the Euclidean space being an extremal of the functional \int (H^2/K - 1) dA. In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces R(u,v) = (Au, Bu, Cu + D cos 2u) + v (sin u, cos u, 0), where A, B, C, D are fixed real numbers. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil.Comment: 28 pages, 9 figures. Minor correction: missed assumption (*) added to Propositions 1-2 and Theorem 2, missed case (nested circles having nonempty envelope) added in the proof of Pencil Theorem 4, missed proof that the arcs cut off by the envelope are disjoint added in the proof of Lemma

    1+1+2 Electromagnetic perturbations on non-vacuum LRS class II space-times: Decoupling scalar and 2-vector harmonic amplitudes

    Full text link
    We use the covariant and gauge-invariant 1+1+2 formalism of Clarkson and Barrett \cite{Clarkson2003} to analyze electromagnetic (EM) perturbations on non-vacuum {\it locally rotationally symmetric} (LRS) class II space-times. Ultimately, we show how to derive six real decoupled equations governing the total of six EM scalar and 2-vector harmonic amplitudes. Four of these are new, and result from expanding the complex EM 2-vector which we defined in \cite{Burston2007} in terms of EM 2-vector harmonic amplitudes. We are then able to show that there are four precise combinations of the amplitudes that decouple, two of these are polar perturbations whereas the remaining two are axial. The remaining two decoupled equations are the generalized Regge-Wheeler equations which were developed previously in \cite{Betschart2004}, and these govern the two EM scalar harmonic amplitudes. However, our analysis generalizes this by including a full description and classification of energy-momentum sources, such as charges and currents.Comment: 9 page

    1+1+2 Electromagnetic perturbations on general LRS space-times: Regge-Wheeler and Bardeen-Press equations

    Full text link
    We use the, covariant and gauge-invariant, 1+1+2 formalism developed by Clarkson and Barrett, and develop new techniques, to decouple electromagnetic (EM) perturbations on arbitrary locally rotationally symmetric (LRS) space-times. Ultimately, we derive 3 decoupled complex equations governing 3 complex scalars. One of these is a new Regge-Wheeler (RW) equation generalized for LRS space-times, whereas the remaining two are new generalizations of the Bardeen-Press (BP) equations. This is achieved by first using linear algebra techniques to rewrite the first-order Maxwell equations in a new complex 1+1+2 form which is conducive to decoupling. This new complex system immediately yields the generalized RW equation, and furthermore, we also derive a decoupled equation governing a newly defined complex EM 2-vector. Subsequently, a further decomposition of the 1+1+2 formalism into a 1+1+1+1 formalism is developed, allowing us to decompose the complex EM 2-vector, and its governing equations, into spin-weighted scalars, giving rise to the generalized BP equations
    • …
    corecore