72 research outputs found
Bryophytes of Uganda : 4., new and additional records, 2
20 hepatics and 16 mosses are reported new to Uganda, 1 moss being also new to Africa. A further 6 taxa are recorded for the second time from Uganda
Bryophytes of Uganda : 2., new and interesting records
51 hepatics and 46 mosses are reported new to Uganda, including one moss new to Africa, one hepatic and two mosses new to mainland Africa, and 2 hepatics that are otherwise known only from their type collection
Bryophytes of Uganda : 6., new and additional records, 3.
12 hepatics and 32 mosses are reported new to Uganda, 1 moss being also new to Africa, and 1 liverwort new to mainland Africa. Ectropothecium plumigerum (Broth.) Hedenäs is a new combination (basionym: Isopterygium plumigerum Broth.) with a new synonym Taxicaulis plumirameus Müll.Hal. nom. nud., and Taxiphyllum maniae (Renauld & Paris) M. Fleisch. is a new synonym of Taxiphyllum taxirameum (Mitt.) M.Fleisch. Three mosses are removed from the Uganda list
Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension
The SPIRIT 2013 (The Standard Protocol Items: Recommendations for Interventional Trials) statement aims to improve the completeness of clinical trial protocol reporting, by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there is a growing recognition that interventions involving artificial intelligence need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes.
The SPIRIT-AI extension is a new reporting guideline for clinical trials protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI. Both guidelines were developed using a staged consensus process, involving a literature review and expert consultation to generate 26 candidate items, which were consulted on by an international multi-stakeholder group in a 2-stage Delphi survey (103 stakeholders), agreed on in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants).
The SPIRIT-AI extension includes 15 new items, which were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations around the handling of input and output data, the human-AI interaction and analysis of error cases.
SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer-reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial
Challenges in Using mHealth Data From Smartphones and Wearable Devices to Predict Depression Symptom Severity: Retrospective Analysis
A number of challenges exist for the analysis of mHealth data: maintaining
participant engagement over extended time periods and therefore understanding
what constitutes an acceptable threshold of missing data; distinguishing
between the cross-sectional and longitudinal relationships for different
features to determine their utility in tracking within-individual longitudinal
variation or screening individuals at high risk; and understanding the
heterogeneity with which depression manifests itself in behavioral patterns
quantified by the passive features. From 479 participants with MDD, we
extracted 21 features capturing mobility, sleep, and smartphone use. We
investigated the impact of the number of days of available data on feature
quality using the intraclass correlation coefficient and Bland-Altman analysis.
We then examined the nature of the correlation between the 8-item Patient
Health Questionnaire (PHQ-8) depression scale (measured every 14 days) and the
features using the individual-mean correlation, repeated measures correlation,
and linear mixed effects model. Furthermore, we stratified the participants
based on their behavioral difference, quantified by the features, between
periods of high (depression) and low (no depression) PHQ-8 scores using the
Gaussian mixture model. We demonstrated that at least 8 (range 2-12) days were
needed for reliable calculation of most of the features in the 14-day time
window. We observed that features such as sleep onset time correlated better
with PHQ-8 scores cross-sectionally than longitudinally, whereas features such
as wakefulness after sleep onset correlated well with PHQ-8 longitudinally but
worse cross-sectionally. Finally, we found that participants could be separated
into 3 distinct clusters according to their behavioral difference between
periods of depression and periods of no depression
Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): recruitment, retention, and data availability in a longitudinal remote measurement study
BACKGROUND: Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected. We aimed to describe drop out and data completeness in a naturalistic multimodal longitudinal RMT study, in people with a history of recurrent MDD. We further aimed to determine whether those experiencing a depressive relapse at baseline contributed less complete data. METHODS: Remote Assessment of Disease and Relapse – Major Depressive Disorder (RADAR-MDD) is a multi-centre, prospective observational cohort study conducted as part of the Remote Assessment of Disease and Relapse – Central Nervous System (RADAR-CNS) program. People with a history of MDD were provided with a wrist-worn wearable device, and smartphone apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks, and cognitive assessments. Participants were followed-up for a minimum of 11 months and maximum of 24 months. RESULTS: Individuals with a history of MDD (n = 623) were enrolled in the study,. We report 80% completion rates for primary outcome assessments across all follow-up timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. In total, 110 participants had > 50% data available across all data types. CONCLUSIONS: RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible. We found comparable levels of data availability in active and passive forms of data collection, demonstrating that both are feasible in this patient group. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12888-022-03753-1
Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension
The SPIRIT 2013 (The Standard Protocol Items: Recommendations for Interventional Trials) statement aims to improve the completeness of clinical trial protocol reporting, by providing evidence-based recommendations for the minimum set of items to be addressed. This guidance has been instrumental in promoting transparent evaluation of new interventions. More recently, there is a growing recognition that interventions involving artificial intelligence need to undergo rigorous, prospective evaluation to demonstrate their impact on health outcomes. The SPIRIT-AI extension is a new reporting guideline for clinical trials protocols evaluating interventions with an AI component. It was developed in parallel with its companion statement for trial reports: CONSORT-AI. Both guidelines were developed using a staged consensus process, involving a literature review and expert consultation to generate 26 candidate items, which were consulted on by an international multi-stakeholder group in a 2-stage Delphi survey (103 stakeholders), agreed on in a consensus meeting (31 stakeholders) and refined through a checklist pilot (34 participants). The SPIRIT-AI extension includes 15 new items, which were considered sufficiently important for clinical trial protocols of AI interventions. These new items should be routinely reported in addition to the core SPIRIT 2013 items. SPIRIT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention will be integrated, considerations around the handling of input and output data, the human-AI interaction and analysis of error cases. SPIRIT-AI will help promote transparency and completeness for clinical trial protocols for AI interventions. Its use will assist editors and peer-reviewers, as well as the general readership, to understand, interpret and critically appraise the design and risk of bias for a planned clinical trial
Case Reports1. A Late Presentation of Loeys-Dietz Syndrome: Beware of TGFβ Receptor Mutations in Benign Joint Hypermobility
Background: Thoracic aortic aneurysms (TAA) and dissections are not uncommon causes of sudden death in young adults. Loeys-Dietz syndrome (LDS) is a rare, recently described, autosomal dominant, connective tissue disease characterized by aggressive arterial aneurysms, resulting from mutations in the transforming growth factor beta (TGFβ) receptor genes TGFBR1 and TGFBR2. Mean age at death is 26.1 years, most often due to aortic dissection. We report an unusually late presentation of LDS, diagnosed following elective surgery in a female with a long history of joint hypermobility. Methods: A 51-year-old Caucasian lady complained of chest pain and headache following a dural leak from spinal anaesthesia for an elective ankle arthroscopy. CT scan and echocardiography demonstrated a dilated aortic root and significant aortic regurgitation. MRA demonstrated aortic tortuosity, an infrarenal aortic aneurysm and aneurysms in the left renal and right internal mammary arteries. She underwent aortic root repair and aortic valve replacement. She had a background of long-standing joint pains secondary to hypermobility, easy bruising, unusual fracture susceptibility and mild bronchiectasis. She had one healthy child age 32, after which she suffered a uterine prolapse. Examination revealed mild Marfanoid features. Uvula, skin and ophthalmological examination was normal. Results: Fibrillin-1 testing for Marfan syndrome (MFS) was negative. Detection of a c.1270G > C (p.Gly424Arg) TGFBR2 mutation confirmed the diagnosis of LDS. Losartan was started for vascular protection. Conclusions: LDS is a severe inherited vasculopathy that usually presents in childhood. It is characterized by aortic root dilatation and ascending aneurysms. There is a higher risk of aortic dissection compared with MFS. Clinical features overlap with MFS and Ehlers Danlos syndrome Type IV, but differentiating dysmorphogenic features include ocular hypertelorism, bifid uvula and cleft palate. Echocardiography and MRA or CT scanning from head to pelvis is recommended to establish the extent of vascular involvement. Management involves early surgical intervention, including early valve-sparing aortic root replacement, genetic counselling and close monitoring in pregnancy. Despite being caused by loss of function mutations in either TGFβ receptor, paradoxical activation of TGFβ signalling is seen, suggesting that TGFβ antagonism may confer disease modifying effects similar to those observed in MFS. TGFβ antagonism can be achieved with angiotensin antagonists, such as Losartan, which is able to delay aortic aneurysm development in preclinical models and in patients with MFS. Our case emphasizes the importance of timely recognition of vasculopathy syndromes in patients with hypermobility and the need for early surgical intervention. It also highlights their heterogeneity and the potential for late presentation. Disclosures: The authors have declared no conflicts of interes
- …