23,903 research outputs found

    Revised Huang-Yang multipolar pseudopotential

    Full text link
    A number of authors have recently pointed out inconsistencies of results obtained with the Huang-Yang multipolar pseudo-potential for low-energy scattering [K. Huang and K. C. Yang, Phys. Rev. A, v 105, 767 (1957); later revised in K. Huang, ``Statistical Mechanics'', (Wiley, New York, 1963)]. The conceptual validity of their original derivation has been questioned. Here I show that these inconsistencies are rather due to an {\em algebraic} mistake made by Huang and Yang. With the corrected error, I present the revised version of the multipolar pseudo-potential

    CPA eldercare : a practitioner\u27s resource guide;

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1115/thumbnail.jp

    CPA eldercare : a practitioner\u27s resource guide;

    Get PDF
    3 1/2 disk not readable and so not included in PDFhttps://egrove.olemiss.edu/aicpa_guides/1104/thumbnail.jp

    CPA eldercare : a practitioner\u27s resource guide;

    Get PDF
    https://egrove.olemiss.edu/aicpa_guides/1114/thumbnail.jp

    Eigenstate Structure in Graphs and Disordered Lattices

    Full text link
    We study wave function structure for quantum graphs in the chaotic and disordered regime, using measures such as the wave function intensity distribution and the inverse participation ratio. The result is much less ergodicity than expected from random matrix theory, even though the spectral statistics are in agreement with random matrix predictions. Instead, analytical calculations based on short-time semiclassical behavior correctly describe the eigenstate structure.Comment: 4 pages, including 2 figure

    CPA elderCare/primePlus services : a practitioner\u27s resource guide;

    Get PDF
    CD-ROM files converted to PDF and included after main texthttps://egrove.olemiss.edu/aicpa_guides/1105/thumbnail.jp

    Few-body physics in effective field theory

    Full text link
    Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms and nuclear physics. In particular, we will discuss the possibility of an infrared limit cycle in QCD. Recent extensions of the EFT approach to the four-body system and N-boson droplets in two spatial dimensions will also be addressed.Comment: 10 pages, 5 figures, Proceedings of the INT Workshop on "Nuclear Forces and the Quantum Many-Body Problem", Oct. 200

    A Coherent Timing Solution for the Nearby Isolated Neutron Star RX J0720.4-3125

    Full text link
    We present the results of a dedicated effort to measure the spin-down rate of the nearby isolated neutron star RX J0720.4-3125. Comparing arrival times of the 8.39-sec pulsations for data from Chandra we derive an unambiguous timing solution for RX J0720.4-3125 that is accurate to 5 years. Adding data from XMM and ROSAT, the final solution yields Pdot=(6.98+/-0.02)x10^(-14) s/s; for dipole spin-down, this implies a characteristic age of 2 Myr and a magnetic field strength of 2.4e13 G. The phase residuals are somewhat larger than those for purely regular spin-down, but do not show conclusive evidence for higher-order terms or a glitch. From our timing solution as well as recent X-ray spectroscopy, we concur with recent suggestions that RX J0720.4-3125 is most likely an off-beam radio pulsar with a moderately high magnetic field.Comment: 5 pages, 1 figure. Accepted for publication in ApJ

    Phonons in random alloys: the itinerant coherent-potential approximation

    Full text link
    We present the itinerant coherent-potential approximation(ICPA), an analytic, translationally invariant and tractable form of augmented-space-based, multiple-scattering theory in a single-site approximation for harmonic phonons in realistic random binary alloys with mass and force-constant disorder. We provide expressions for quantities needed for comparison with experimental structure factors such as partial and average spectral functions and derive the sum rules associated with them. Numerical results are presented for Ni_{55} Pd_{45} and Ni_{50} Pt_{50} alloys which serve as test cases, the former for weak force-constant disorder and the latter for strong. We present results on dispersion curves and disorder-induced widths. Direct comparisons with the single-site coherent potential approximation(CPA) and experiment are made which provide insight into the physics of force-constant changes in random alloys. The CPA accounts well for the weak force-constant disorder case but fails for strong force-constant disorder where the ICPA succeeds.Comment: 19 pages, 12 eps figures, uses RevTex
    • …
    corecore