7 research outputs found

    Search for the Nondimerized Quantum Nematic Phase in the Spin-1 Chain

    Full text link
    Chubukov's proposal concerning the possibility of a nondimerized quantum nematic phase in the ground-state phase diagram of the bilinear-biquadratic spin-1 chain is studied numerically. Our results do not support the existence of this phase, but they rather indicate a direct transition from the ferromagnetic into the dimerized phase.Comment: REVTEX, 14 pages +8 PostScript figure

    Transport properties of one-dimensional interacting fermions in aperiodic potentials

    Full text link
    Motivated by the existence of metal-insulator transition in one-dimensional non-interacting fermions in quasiperiodic and pseudorandom potentials, we studied interacting spinless fermion models using exact many-body Lanczos diagonalization techniques. Our main focus was to understand the effect of the fermion-fermion interaction on the transport properties of aperiodic systems. We calculated the ground state energy and the Kohn charge stiffness Dc. Our numerical results indicate that there exists a region in the interaction strength parameter space where the system may behave differently from the metallic and insulating phases. This intermediate phase may be characterized by a power law scaling of the charge stiffness constant in contrast to the localized phase where Dc scales exponentially with the size of the system.Comment: 11 pages LaTex document with 5 eps figures. Uses revtex style file

    Universal Short-Time Dynamics in the Kosterlitz-Thouless Phase

    Full text link
    We study the short-time dynamics of systems that develop ``quasi long-range order'' after a quench to the Kosterlitz-Thouless phase. With the working hypothesis that the ``universal short-time behavior'', previously found in Ising-like systems, also occurs in the Kosterlitz-Thouless phase, we explore the scaling behavior of thermodynamic variables during the relaxational process following the quench. As a concrete example, we investigate the two-dimensional 66-state clock model by Monte Carlo simulation. The exponents governing the magnetization, the second moment, and the autocorrelation function are calculated. From them, by means of scaling relations, estimates for the equilibrium exponents zz and η\eta are derived. In particular, our estimates for the temperature-dependent anomalous dimension η\eta that governs the static correlation function are consistent with existing analytical and numerical results and, thus, confirm our working hypothesis.Comment: 16 pages, 9 postscript figures, REVTEX 3.0, submitted to Phys. Rev.

    Field-induced Ordering in Critical Antiferromagnets

    Full text link
    Transfer-matrix scaling methods have been used to study critical properties of field-induced phase transitions of two distinct two-dimensional antiferromagnets with discrete-symmetry order parameters: triangular-lattice Ising systems (TIAF) and the square-lattice three-state Potts model (SPAF-3). Our main findings are summarised as follows. For TIAF, we have shown that the critical line leaves the zero-temperature, zero -field fixed point at a finite angle. Our best estimate of the slope at the origin is (dTc/dH)T=H=0=4.74±0.15(dT_c/dH)_{T=H=0} = 4.74 \pm 0.15. For SPAF-3 we provided evidence that the zero-field correlation length diverges as ξ(T0,H=0)exp(a/Tx)\xi(T \to 0, H=0) \simeq \exp (a/T^{x}), with x=1.08±0.13x=1.08 \pm 0.13, through analysis of the critical curve at H0H \neq 0 plus crossover arguments. For SPAF-3 we have also ascertained that the conformal anomaly and decay-of-correlations exponent behave as: (a) H=0: c=1,η=1/3c=1, \eta=1/3; (b) H0:c=1/2,η=1/4H \neq 0: c=1/2, \eta=1/4.Comment: RevTex, 7 pages, 4 eps figures, to be published in Phys. Rev.

    A Numerical Transfer-Matrix Study of Surface-Tension Anisotropy in Ising Models on Square and Cubic Lattices

    Full text link
    We compute by numerical transfer-matrix methods the surface free energy τ(T),\tau(T), the surface stiffness coefficient κ(T),\kappa(T), and the single-step free energy s(T)s(T) for Ising ferromagnets with (×L)(\infty \times L) square-lattice and (×L×M)(\infty \times L \times M) cubic-lattice geometries, into which an interface is introduced by imposing antiperiodic or plus/minus boundary conditions in one transverse direction. These quantities occur in expansions of the angle-dependent surface tension, either for rough or for smooth interfaces. The finite-size scaling behavior of the interfacial correlation length provides the means of investigating κ(T)\kappa(T) and s(T).s(T). The resulting transfer-matrix estimates are fully consistent with previous series and Monte Carlo studies, although current computational technology does not permit transfer-matrix studies of sufficiently large systems to show quantitative improvement over the previous estimates.Comment: 40 pages, 17 figures available on request. RevTeX version 2.
    corecore