347 research outputs found

    A Semi-analytic Study of Axial Perturbations of Ultra Compact Stars

    Full text link
    Compact object perturbations, at linear order, often lead in solving one or more coupled wave equations. The study of these equations was typically done by numerical or semi-analytical methods. The WKB method and the associated Bohr-Sommerfeld rule have been proved extremely useful tools in the study of black-hole perturbations and the estimation of the related quasi-normal modes. Here we present an extension of the aforementioned semi-analytic methods in the study of perturbations of ultra-compact stars and gravastars.Comment: Accepted for publication in CQG, 13 pages, 3 figures, 5 table

    Parameter estimation of gravitational wave echoes from exotic compact objects

    Full text link
    Relativistic ultracompact objects without an event horizon may be able to form in nature and merge as binary systems, mimicking the coalescence of ordinary black holes. The postmerger phase of such processes presents characteristic signatures, which appear as repeated pulses within the emitted gravitational waveform, i.e., echoes with variable amplitudes and frequencies. Future detections of these signals can shed new light on the existence of horizonless geometries, and provide new information on the nature of gravity in a genuine strong-field regime. In this work we analyze phenomenological templates used to characterize echolike structures produced by exotic compact objects, and we investigate for the first time the ability of current and future interferometers to constrain their parameters. Using different models with an increasing level of accuracy, we determine the features that can be measured with the largest precision, and we span the parameter space to find the most favorable configurations to be detected. Our analysis shows that current detectors may already be able to extract all the parameters of the echoes with good accuracy, and that multiple interferometers can measure frequencies and damping factors of the signals at the level of percent.Comment: References update

    Quasi-Normal Modes from Bound States: The Numerical Approach

    Get PDF
    It is known that the spectrum of quasi-normal modes of potential barriers is related to the spectrum of bound states of the corresponding potential wells. This property has been widely used to compute black hole quasi-normal modes, but it is limited to a few "approximate" potentials with certain transformation properties for which the spectrum of bound states must be known analytically. In this work we circumvent this limitation by proposing an approach that allows one to make use of potentials with similar transformation properties, but where the spectrum of bound states can also be computed numerically. Because the numerical calculation of bound states is usually more stable than the direct computation of the corresponding quasi-normal modes, the new approach is also interesting from a technical point of view. We apply the method to different potentials, including the P\"oschl-Teller potential for which all steps can be understood analytically, as well as potentials for which we are not aware of analytic results but provide independent numerical results for comparison. As a canonical test, all potentials are chosen to match the Regge-Wheeler potential of axial perturbations of the Schwarzschild black hole. We find that the new approximate potentials are more suitable to approximate the exact quasi-normal modes than the P\"oschl-Teller potential, particularly for the first overtone. We hope this work opens new perspectives to the computation of quasi-normal modes and finds further improvements and generalizations in the future.Comment: 13 pages, 10 figures, 3 tables. Comments welcome

    Rapidly rotating neutron stars: Universal relations and EOS inference

    Full text link
    We provide accurate universal relations that allow to estimate the moment of inertia II and the ratio of kinetic to gravitational binding energy T/WT/W of uniformly rotating neutron stars from the knowledge of mass, radius, and moment of inertia of an associated non-rotating neutron star. Based on these, several other fluid quantities can be estimated as well. Astrophysical neutron stars rotate to varying degrees and although rotational effects may be neglected in some cases, not modeling them will inevitably introduce bias when performing parameter estimation. This is especially important for future, high-precision measurements coming from electromagnetic and gravitational wave observations. The proposed universal relations facilitate computationally cheap EOS inference codes that permit the inclusion of observations of rotating neutron stars. To demonstrate this, we deploy them into a recent Bayesian framework for equation of state parameter estimation that is now valid for arbitrary, uniform rotation. Our inference results are robust up to around percent level precision for the generated neutron star observations, consisting of the mass, equatorial radius, rotation rate, as well as co- and counter-rotating ff-mode frequencies, that enter the framework as data.Comment: 16 pages, 14 figure

    Constraining modifications of black hole perturbation potentials near the light ring with quasinormal modes

    Full text link
    In modified theories of gravity, the potentials appearing in the Schr\"odinger-like equations that describe perturbations of non-rotating black holes are also modified. In this paper we ask: can these modifications be constrained with high-precision gravitational-wave measurements of the black hole's quasinormal mode frequencies? We expand the modifications in a small perturbative parameter regulating the deviation from the general-relativistic potential, and in powers of M/rM/r. We compute the quasinormal modes of the modified potential up to quadratic order in the perturbative parameter. Then we use Markov-chain-Monte-Carlo (MCMC) methods to recover the coefficients in the M/rM/r expansion in an ``optimistic'' scenario where we vary them one at a time, and in a ``pessimistic'' scenario where we vary them all simultaneously. In both cases, we find that the bounds on the individual parameters are not robust. Because quasinormal mode frequencies are related to the behavior of the perturbation potential near the light ring, we propose a different strategy. Inspired by Wentzel-Kramers-Brillouin (WKB) theory, we demonstrate that the value of the potential and of its second derivative at the light ring can be robustly constrained. These constraints allow for a more direct comparison between tests based on black hole spectroscopy and observations of black hole `shadows'' by the Event Horizon Telescope and future instruments.Comment: 12 pages, 7 figure

    To ring or not to ring, the tale of black hole quasi-normal modes

    Full text link
    Extracting quasi-normal modes from compact binary mergers to perform black hole spectroscopy is one of the fundamental pillars in current and future strong-gravity tests. Among the most remarkable findings of recent works is that including a large number of overtones not only reduces the mismatch of the fitted ringdown but also allows one to extract black hole parameters from a ringdown analysis that goes well within the non-linear merger part. At the same time, it is well understood that several details of the ringdown analysis have important consequences for the question of whether overtones are present or not, and subsequently, to what extent one can claim to perform black hole spectroscopy. To clarify and tackle some aspects of overtone fitting, we revisit the clearer problem of wave propagation in the scalar Regge-Wheeler and P\"oschl-Teller potentials. This set-up, which is to some extent qualitatively very similar to the non-linear merger-ringdown regime, indicates that using even an approximate model for the overtones yields an improved extraction of the black hole mass at early ringdown times. We find that the relevant parameter is the number of included modes rather than using the correct model for the overtones themselves. This further adds evidence to the proposal that large overtone numbers may instead remove non-quasi-normal mode contributions that are relevant at early times of a ringdown, but do not necessarily correspond to the physical excitation of modes of the system.Comment: 9 pages, 9 figure
    • …
    corecore