150,146 research outputs found

    Spectral evolution of two-dimensional kinetic plasma turbulence in the wavenumber-frequency domain

    Full text link
    We present a method for studying the evolution of plasma turbulence by tracking dispersion relations in the energy spectrum in the wavenumber-frequency domain. We apply hybrid plasma simulations in a simplified two-dimensional geometry to demonstrate our method and its applicability to plasma turbulence in the ion kinetic regime. We identify four dispersion relations: ion-Bernstein waves, oblique whistler waves, oblique Alfv\'en/ion-cyclotron waves, and a zero-frequency mode. The energy partition and frequency broadening are evaluated for these modes. The method allows us to determine the evolution of decaying plasma turbulence in our restricted geometry and shows that it cascades along the dispersion relations during the early phase with an increasing broadening around the dispersion relations.Comment: 11 pages, 4 figure

    From the chiral magnetic wave to the charge dependence of elliptic flow

    Get PDF
    The quark-gluon plasma formed in heavy ion collisions contains charged chiral fermions evolving in an external magnetic field. At finite density of electric charge or baryon number (resulting either from nuclear stopping or from fluctuations), the triangle anomaly induces in the plasma the Chiral Magnetic Wave (CMW). The CMW first induces a separation of the right and left chiral charges along the magnetic field; the resulting dipolar axial charge density in turn induces the oppositely directed vector charge currents leading to an electric quadrupole moment of the quark-gluon plasma. Boosted by the strong collective flow, the electric quadrupole moment translates into the charge dependence of the elliptic flow coefficients, so that v2(π+)<v2(π−)v_2(\pi^+) < v_2(\pi^-) (at positive net charge). Using the latest quantitative simulations of the produced magnetic field and solving the CMW equation, we make further quantitative estimates of the produced v2v_2 splitting and its centrality dependence. We compare the results with the available experimental data.Comment: Contains 12 pages, 6 figures, written as a proceeding for the talk of Y. Burnier at the conference "P and CP-odd Effects in Hot and Dense Matter 2012" held in BN

    The 1-soliton in the SO(3) gauged Skyrme model with mass term

    Get PDF
    The solitons of the SO(3) gauged Skyrme model with no pion-mass potential were studied in Refs. {nl,jmp}. Here, the effects of the inclusion of this potential are studied. In contrast with the (ungauged) Skyrme model, where the effect of this potential on the solitons is marginal, here it turns out to be decisive, resulting in very different dependence of the energy as a function of the Skyrme coupling constant.Comment: new title, typos corrected, LaTeX, 8 pages, 4 figure

    Generalized constraints on quantum amplification

    Full text link
    We derive quantum constraints on the minimal amount of noise added in linear amplification involving input or output signals whose component operators do not necessarily have c-number commutators, as is the case for fermion currents. This is a generalization of constraints derived for the amplification of bosonic fields whose components posses c-number commutators.Comment: 4 pages, 1 figure, submitted to Physical Review Letter

    Cyclic and ruled Lagrangian surfaces in complex Euclidean space

    Full text link
    We study those Lagrangian surfaces in complex Euclidean space which are foliated by circles or by straight lines. The former, which we call cyclic, come in three types, each one being described by means of, respectively, a planar curve, a Legendrian curve of the 3-sphere or a Legendrian curve of the anti de Sitter 3-space. We also describe ruled Lagrangian surfaces. Finally we characterize those cyclic and ruled Lagrangian surfaces which are solutions to the self-similar equation of the Mean Curvature Flow. Finally, we give a partial result in the case of Hamiltonian stationary cyclic surfaces

    Vlasov scaling for stochastic dynamics of continuous systems

    Full text link
    We describe a general scheme of derivation of the Vlasov-type equations for Markov evolutions of particle systems in continuum. This scheme is based on a proper scaling of corresponding Markov generators and has an algorithmic realization in terms of related hierarchical chains of correlation functions equations. Several examples of the realization of the proposed approach in particular models are presented.Comment: 23 page

    Signatures of Dynamical Tunneling in the Wave function of a Soft-Walled Open Microwave Billiard

    Full text link
    Evidence for dynamical tunneling is observed in studies of the transmission, and wave functions, of a soft-walled microwave cavity resonator. In contrast to previous work, we identify the conditions for dynamical tunneling by monitoring the evolution of the wave function phase as a function of energy, which allows us to detect the tunneling process even under conditions where its expected level splitting remains irresolvable.Comment: 5 pages, 5 figure

    Dramatic role of critical current anisotropy on flux avalanches in MgB2 films

    Full text link
    Anisotropic penetration of magnetic flux in MgB2 films grown on vicinal sapphire substrates is investigated using magneto-optical imaging. Regular penetration above 10 K proceeds more easily along the substrate surface steps, anisotropy of the critical current being 6%. At lower temperatures the penetration occurs via abrupt dendritic avalanches that preferentially propagate {\em perpendicular} to the surface steps. This inverse anisotropy in the penetration pattern becomes dramatic very close to 10 K where all flux avalanches propagate in the strongest-pinning direction. The observed behavior is fully explained using a thermomagnetic model of the dendritic instability.Comment: 4 pages, 5 figure

    The correlation potential in density functional theory at the GW-level: spherical atoms

    Full text link
    As part of a project to obtain better optical response functions for nano materials and other systems with strong excitonic effects we here calculate the exchange-correlation (XC) potential of density-functional theory (DFT) at a level of approximation which corresponds to the dynamically- screened-exchange or GW approximation. In this process we have designed a new numerical method based on cubic splines which appears to be superior to other techniques previously applied to the "inverse engineering problem" of DFT, i.e., the problem of finding an XC potential from a known particle density. The potentials we obtain do not suffer from unphysical ripple and have, to within a reasonable accuracy, the correct asymptotic tails outside localized systems. The XC potential is an important ingredient in finding the particle-conserving excitation energies in atoms and molecules and our potentials perform better in this regard as compared to the LDA potential, potentials from GGA:s, and a DFT potential based on MP2 theory.Comment: 13 pages, 9 figure

    Fast high-efficiency integrated waveguide photodetectors using novel hybrid vertical/butt coupling geometry

    Get PDF
    We report a novel coupling geometry for integrated waveguide photodetectors−a hybrid vertical coupling/butt coupling scheme that allows the integration of fast, efficient, photodetectors with conventional double heterostructure waveguides. It can be employed to yield a planar, or pseudo-planar, surface that supports further levels of integration. The approach is demonstrated with a 25-µm-long p-i-n detector integrated with an InP/InGaAsP/InP waveguide, which displays a high (~90%) efficiency and large (~15 GHz) bandwidth. This is the fastest high-efficiency integrated waveguide photodetector reported to date
    • …
    corecore