1,854 research outputs found

    HEAT repeats – versatile arrays of amphiphilic helices working in crowded environments?

    Get PDF
    Cellular proteins do not work alone in diluted conditions. They often function as part of large macromolecular complexes, which are transported and concentrated into specific cellular compartments and function in their highly crowded environments. A central theme of modern cell biology is to understand how cellular proteins might achieve these challenging tasks efficiently and faithfully. In this Opinion article, we will focus on HEAT repeats, flexible arrays of amphiphilic helices found in many eukaryotic proteins such as karyopherins and condensins, and discuss how this uniquely designed helical repeats might underlie dynamic protein-protein interactions and support cellular functions in crowded environments. We will make bold speculations on functional similarities between HEAT repeats and intrinsically disordered regions (IDRs) in macromolecular phase separation. Potential contributions of HEAT-HEAT interactions, as well as cooperation between HEATs and IDRs, to mesoscale organelle assembly will be discussed

    Standing Accretion Shocks in the Supernova Core: Effects of Convection and Realistic EOS

    Get PDF
    We investigated the structure of the spherically symmetric accretion flows through the standing shock wave onto the proto-neutron star in the post-bounce phase of the collapse-driven supernova. We assume that the accretion flow is in a steady state controlled by the neutrino luminosity and mass accretion rate that are kept constant. We obtain solutions of the steady Euler equations for a wide range of neutrino luminosity and mass accretion rate. We employ a realistic EOS and neutrino-heating rates. More importantly, we take into account the effect of convection phenomenologically. For each mass accretion rate, we find the critical neutrino luminosity, above which there exists no steady solution. These critical points are supposed to mark the onset of the shock revival. As the neutrino luminosity increases for a given mass accretion rate, there appears a convectively unstable region at some point before the critical value is reached. We introduce a phenomenological energy flux by convection so that the negative entropy gradient should be canceled out. We find that the convection lowers the critical neutrino luminosity substantially. We also consider the effect of the self-gravity. It is found that the self-gravity is important only when the neutrino luminosity is high. The critical luminosity, however, is little affected if the energy transport by convection is taken into account.Comment: accepted by ApJ, 20 pages, 8 figure

    A Polynomial-time, Truthful, Individually Rational and Budget Balanced Ridesharing Mechanism

    Full text link
    Ridesharing has great potential to improve transportation efficiency while reducing congestion and pollution. To realize this potential, mechanisms are needed that allocate vehicles optimally and provide the right incentives to riders. However, many existing approaches consider restricted settings (e.g., only one rider per vehicle or a common origin for all riders). Moreover, naive applications of standard approaches, such as the Vickrey-Clarke-Groves or greedy mechanisms, cannot achieve a polynomial-time, truthful, individually rational and budget balanced mechanism. To address this, we formulate a general ridesharing problem and apply mechanism design to develop a novel mechanism which satisfies all four properties and whose social cost is within 8.6% of the optimal on average

    Effects of rotation on the revival of a stalled shock in supernova explosions

    Full text link
    In order to infer the effects of rotation on the revival of a stalled shock in supernova explosions, we investigated steady accretion flows with a standing shock. We first obtained a series of solutions for equations describing non-rotating spherically symmetric flows and confirmed the results of preceding papers that, for a given mass accretion rate, there is a critical luminosity of irradiating neutrinos, above which there exists no steady solution. Below the critical value, we found two branches of solutions; one is stable and the other is unstable against radial perturbations. With a simple argument based on the Riemann problem, we can identify the critical luminosity as the one, at which the stalled shock revives. We also obtained the condition satisfied by the flow velocity for the critical luminosity, which can be easily applied to the rotational case. If a collapsing star rotates, the accretion flow is non-spherical due to centrifugal forces. Flows are accelerated near the rotation axis whereas they are decelerated near the equatorial plane. As a result, the critical luminosity is lowered, that is, rotation assists the revival of a stalled shock. According to our calculations, the critical luminosity is ∼25\sim25% lower for the mass accretion rate of 1M⊙_{\odot}/sec and the rotation frequency of 0.1 Hz at a radius of 1000 km than that of the spherically symmetric flow with the same mass accretion rate. We found that the condition of the flow velocity at the critical luminosity is first satisfied at the rotation axis. This suggests that the shock revival is triggered on the rotation axis and a jet-like explosion ensues.Comment: 26 pages, 10 figures, submitted to Ap

    Separability of Rotational Effects on a Gravitational Lens

    Full text link
    We derive the deflection angle up to O(m2a)O(m^2a) due to a Kerr gravitational lens with mass mm and specific angular momentum aa. It is known that at the linear order in mm and aa the Kerr lens is observationally equivalent to the Schwarzschild one because of the invariance under the global translation of the center of the lens mass. We show, however, nonlinear couplings break the degeneracy so that the rotational effect becomes in principle separable for multiple images of a single source. Furthermore, it is distinguishable also for each image of an extended source and/or a point source in orbital motion. In practice, the correction at O(m2a)O(m^2a) becomes O(10−10)O(10^{-10}) for the supermassive black hole in our galactic center. Hence, these nonlinear gravitational lensing effects are too small to detect by near-future observations.Comment: 12 pages (RevTeX); accepted for publication in Phys. Rev.

    Magnetic phase diagram of antiferroquadrupole ordering in HoB2C2

    Full text link
    The magnetic phase diagram for antiferro-quadrupole (AFQ) ordering in tetragonal HoB2_2C2_2 has been investigated by measurements of elastic constants C11C_{11}, C44C_{44} and C66C_{66} in fields along the basal xx-yy plane as well as the principal [001]-axis. The hybrid magnet (GAMA) in Tsukuba Magnetic Laboratory was employed for high field measurements up to 30 T. The AFQ phase is no longer observed above 26.3 T along the principal [001] axis in contrast to the relatively small critical field of 3.9 T in fields applied along the basal [110] axis. The quadrupolar intersite interaction of OxyO_{xy} and/or O22O_2^2 is consistent with the anisotropy in the magnetic phase diagram of the AFQ phase in HoB2_2C2_2.Comment: Phys. Rev. B. (2005) in press. approx 8 pages, 10 figure

    A novel Rac1-GSPT1 signaling pathway controls astrogliosis following central nervous system injury

    Get PDF
    Astrogliosis (i.e. glial scar), which is comprised primarily of proliferated astrocytes at the lesion site and migrated astrocytes from neighboring regions, is one of the key reactions in determining outcomes after CNS injury. In an effort to identify potential molecules/pathways that regulate astrogliosis, we sought to determine whether Rac/Rac-mediated signaling in astrocytes represents a novel candidate for therapeutic intervention following CNS injury. For these studies, we generated mice with Rac1 deletion under the control of the GFAP (glial fibrillary acidic protein) promoter (GFAP-Cre;Rac1(flox/flox)). GFAP-Cre;Rac1(flox/flox) (Rac1-KO) mice exhibited better recovery after spinal cord injury and exhibited reduced astrogliosis at the lesion site relative to control. Reduced astrogliosis was also observed in Rac1-KO mice following microbeam irradiation-induced injury. Moreover, knockdown (KD) or KO of Rac1 in astrocytes (LN229 cells, primary astrocytes, or primary astrocytes from Rac1-KO mice) led to delayed cell cycle progression and reduced cell migration. Rac1-KD or Rac1-KO astrocytes additionally had decreased levels of GSPT1 (G(1) to S phase transition 1) expression and reduced responses of IL-1β and GSPT1 to LPS treatment, indicating that IL-1β and GSPT1 are downstream molecules of Rac1 associated with inflammatory condition. Furthermore, GSPT1-KD astrocytes had cell cycle delay, with no effect on cell migration. The cell cycle delay induced by Rac1-KD was rescued by overexpression of GSPT1. Based on these results, we propose that Rac1-GSPT1 represents a novel signaling axis in astrocytes that accelerates proliferation in response to inflammation, which is one important factor in the development of astrogliosis/glial scar following CNS injury

    Does governance play a role in the distribution of invasive alien species?

    Get PDF
    Invasive alien species (IAS) constitute a major threat to global biological diversity. In order to control their spread, a detailed understanding of the factors influencing their distribution is essential. Although international trade is regarded as a major force structuring spatial patterns of IAS, the role of other social factors remains unclear. Despite studies highlighting the importance of strong governance in slowing drivers of biodiversity loss such as logging, deforestation, and agricultural intensification, no study has yet analyzed its contribution to the issue of IAS. Using estimates of governance quality and comprehensive spatiotemporal IAS data, we performed multiple linear regressions to investigate the effect of governance quality upon the distribution of species listed under "100 of the worst" IAS in 38 Eurasian countries as defined by DASIE. Our model suggested that for countries with higher GDP, stronger governance was associated with a greater number of the worst IAS; in contrast, for the lowest GDP countries under analysis, stronger governance was associated with fewer of these IAS. We elucidate how the quality of governance within a country has implications for trade, tourism, transport, legislation, and economic development, all of which influence the spread of IAS. While our findings support the common assumption that strengthening governance benefits conservation interventions in countries of smaller economy, we find that this effect is not universal. Stronger governance alone cannot adequately address the problem of IAS, and targeted action is required in relatively high-GDP countries in order to stem the influx of IAS associated with high volumes of trade
    • …
    corecore