12,382 research outputs found

    Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films

    Full text link
    It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7−δ\rm{YBa_2Cu_3O_{7-\delta}} grown by pulsed laser deposition are annealed at up to 700 atm O2_2 and 900∘^\circC, in conjunction with Cu enrichment by solid-state diffusion. The films show clear formation of Y2Ba4Cu7O15−δ\rm{Y_2Ba_4Cu_7O_{15-\delta}} and Y2Ba4Cu8O16\rm{Y_2Ba_4Cu_8O_{16}} as well as regions of YBa2Cu5O9−δ\rm{YBa_2Cu_5O_{9-\delta}} and YBa2_2Cu6_6O10−δ_{10-\delta} phases, according to scanning transmission electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7−δ\rm{YBa_2Cu_3O_{7-\delta}} powders show no phase conversion. Our results demonstrate a novel route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.Comment: Accepted for publication in Physical Review Material

    The Infrared Properties of Submillimeter Galaxies: Clues From Ultra-Deep 70 Micron Imaging

    Get PDF
    We present 70 micron properties of submillimeter galaxies (SMGs) in the Great Observatories Origins Deep Survey (GOODS) North field. Out of thirty submillimeter galaxies (S_850 > 2 mJy) in the central GOODS-N region, we find two with secure 70 micron detections. These are the first 70 micron detections of SMGs. One of the matched SMGs is at z ~ 0.5 and has S_70/S_850 and S_70/S_24 ratios consistent with a cool galaxy. The second SMG (z = 1.2) has infrared-submm colors which indicate it is more actively forming stars. We examine the average 70 micron properties of the SMGs by performing a stacking analysis, which also allows us to estimate that S_850 > 2 mJy SMGs contribute 9 +- 3% of the 70 micron background light. The S_850/S_70 colors of the SMG population as a whole is best fit by cool galaxies, and because of the redshifting effects these constraints are mainly on the lower z sub-sample. We fit Spectral Energy Distributions (SEDs) to the far-infrared data points of the two detected SMGs and the average low redshift SMG (z_{median}= 1.4). We find that the average low-z SMG has a cooler dust temperature than local ultraluminous infrared galaxies (ULIRGs) of similar luminosity and an SED which is best fit by scaled up versions of normal spiral galaxies. The average low-z SMG is found to have a typical dust temperature T = 21 -- 33 K and infrared luminosity L_{8-1000 micron} = 8.0 \times 10^11 L_sun. We estimate the AGN contribution to the total infrared luminosity of low-z SMGs is less than 23%.Comment: Accepted by ApJ. 14 pages, 6 figures. Minor revisions 20th Dec 200

    Simple Metals at High Pressure

    Full text link
    In this lecture we review high-pressure phase transition sequences exhibited by simple elements, looking at the examples of the main group I, II, IV, V, and VI elements. General trends are established by analyzing the changes in coordination number on compression. Experimentally found phase transitions and crystal structures are discussed with a brief description of the present theoretical picture.Comment: 22 pages, 4 figures, lecture notes for the lecture given at the Erice course on High-Pressure Crystallography in June 2009, Sicily, Ital

    350 Micron Dust Emission from High Redshift Objects

    Get PDF
    We report observations of a sample of high redshift sources (1.8<z<4.7), mainly radio-quiet quasars, at 350 microns using the SHARC bolometer camera at the Caltech Submillimeter Observatory. Nine sources were detected (>4-sigma) and upper limits were obtained for 11 with 350 micron flux density limits (3-sigma) in the range 30-125mJy. Combining published results at other far-infrared and millimeter wavelengths with the present data, we are able to estimate the temperature of the dust, finding relatively low values, averaging 50K. From the spectral energy distribution, we derive dust masses of a few 10^8 M_sun and luminosities of 4-33x10^{12} L_sun (uncorrected for any magnification) implying substantial star formation activity. Thus both the temperature and dust masses are not very different from those of local ultraluminous infrared galaxies. For this redshift range, the 350 micron observations trace the 60-100 micron rest frame emission and are thus directly comparable with IRAS studies of low redshift galaxies.Comment: 5 pages, 2 PS figures. Accepted for publication in Astrophysical Journal Letter

    Effects of disorder in location and size of fence barriers on molecular motion in cell membranes

    Full text link
    The effect of disorder in the energetic heights and in the physical locations of fence barriers encountered by transmembrane molecules such as proteins and lipids in their motion in cell membranes is studied theoretically. The investigation takes as its starting point a recent analysis of a periodic system with constant distances between barriers and constant values of barrier heights, and employs effective medium theory to treat the disorder. The calculations make possible, in principle, the extraction of confinement parameters such as mean compartment sizes and mean intercompartmental transition rates from experimentally reported published observations. The analysis should be helpful both as an unusual application of effective medium theory and as an investigation of observed molecular movements in cell membranes.Comment: 9 pages, 5 figure

    Photochemistry of Furyl- and Thienyldiazomethanes: Spectroscopic Characterization of Triplet 3-Thienylcarbene

    Get PDF
    Photolysis (λ \u3e 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N2 at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm–1, |E/hc| = 0.0554 cm–1; |D/hc| = 0.579 cm–1, |E/hc| = 0.0315 cm–1). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon—an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λmax = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C5H4S or C5H4O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively)

    Inducible expression of a cloned heat shock fusion gene in sea urchin embryos.

    Full text link

    Molecular motion in cell membranes: analytic study of fence-hindered random walks

    Full text link
    A theoretical calculation is presented to describe the confined motion of transmembrane molecules in cell membranes. The study is analytic, based on Master equations for the probability of the molecules moving as random walkers, and leads to explicit usable solutions including expressions for the molecular mean square displacement and effective diffusion constants. One outcome is a detailed understanding of the dependence of the time variation of the mean square displacement on the initial placement of the molecule within the confined region. How to use the calculations is illustrated by extracting (confinement) compartment sizes from experimentally reported published observations from single particle tracking experiments on the diffusion of gold-tagged G-protein coupled mu-opioid receptors in the normal rat kidney cell membrane, and by further comparing the analytical results to observations on the diffusion of phospholipids, also in normal rat kidney cells.Comment: 10 pages, 5 figure

    Optimal Traffic Networks

    Full text link
    Inspired by studies on the airports' network and the physical Internet, we propose a general model of weighted networks via an optimization principle. The topology of the optimal network turns out to be a spanning tree that minimizes a combination of topological and metric quantities. It is characterized by a strongly heterogeneous traffic, non-trivial correlations between distance and traffic and a broadly distributed centrality. A clear spatial hierarchical organization, with local hubs distributing traffic in smaller regions, emerges as a result of the optimization. Varying the parameters of the cost function, different classes of trees are recovered, including in particular the minimum spanning tree and the shortest path tree. These results suggest that a variational approach represents an alternative and possibly very meaningful path to the study of the structure of complex weighted networks.Comment: 4 pages, 4 figures, final revised versio
    • …
    corecore