12,891 research outputs found

    Optimal cloning of single photon polarization by coherent feedback of beam splitter losses

    Full text link
    Light fields can be amplified by measuring the field amplitude reflected at a beam splitter of reflectivity R and adding a coherent amplitude proportional to the measurement result to the transmitted field. By applying the quantum optical realization of this amplification scheme to single photon inputs, it is possible to clone the polarization states of photons. We show that optimal cloning of single photon polarization is possible when the gain factor of the amplification is equal to the inverse squareroot of 1-R.Comment: 10 pages, including 1 figure, extended from letter to full paper, to be published in New Journal of Physic

    Computing Web-scale Topic Models using an Asynchronous Parameter Server

    Full text link
    Topic models such as Latent Dirichlet Allocation (LDA) have been widely used in information retrieval for tasks ranging from smoothing and feedback methods to tools for exploratory search and discovery. However, classical methods for inferring topic models do not scale up to the massive size of today's publicly available Web-scale data sets. The state-of-the-art approaches rely on custom strategies, implementations and hardware to facilitate their asynchronous, communication-intensive workloads. We present APS-LDA, which integrates state-of-the-art topic modeling with cluster computing frameworks such as Spark using a novel asynchronous parameter server. Advantages of this integration include convenient usage of existing data processing pipelines and eliminating the need for disk writes as data can be kept in memory from start to finish. Our goal is not to outperform highly customized implementations, but to propose a general high-performance topic modeling framework that can easily be used in today's data processing pipelines. We compare APS-LDA to the existing Spark LDA implementations and show that our system can, on a 480-core cluster, process up to 135 times more data and 10 times more topics without sacrificing model quality.Comment: To appear in SIGIR 201

    Analytical design and simulation evaluation of an approach flight director system for a jet STOL aircraft

    Get PDF
    A program was undertaken to develop design criteria and operational procedures for STOL transport aircraft. As part of that program, a series of flight tests shall be performed in an Augmentor Wing Jet STOL Aircraft. In preparation for the flight test programs, an analytical study was conducted to gain an understanding of the characteristics of the vehicle for manual control, to assess the relative merits of the variety of manual control techniques available with attitude and thrust vector controllers, and to determine what improvements can be made over manual control of the bare airframe by providing the pilot with suitable command guidance information and by augmentation of the bare airframe dynamics. The objective of the study is to apply closed-loop pilot/vehicle analysis techniques to the analysis of manual flight control of powered-lift STOL aircraft in the landing approach and to the design and experimental verification of an advanced flight director display

    Ultrafast circular polarization oscillations in spin-polarized vertical-cavity surface-emitting laser devices

    Get PDF
    Spin-polarized lasers offer new encouraging possibilities for future devices. We investigate the polarization dynamics of electrically pumped vertical-cavity surface-emitting lasers after additional spin injection at room temperature. We find that the circular polarization degree exhibits faster dynamics than the emitted light. Moreover the experimental results demonstrate a strongly damped ultrafast circular polarization oscillation due to spin injection with an oscillation frequency of approximately 11GHz depending on the birefringence in the VCSEL device. We compare our experimental results with theoretical calculations based on rate-equations. This allows us to predict undamped long persisting ultrafast polarization oscillations, which reveal the potential of spin-VCSELs for ultrafast modulation applications

    Birefringence controlled room-temperature picosecond spin dynamics close to the threshold of vertical-cavity surface-emitting laser devices

    Get PDF
    We analyze the spin-induced circular polarization dynamics at the threshold of vertical-cavity surface-emitting lasers at room-temperature using a hybrid excitation combining electrically pumping without spin preference and spin-polarized optical injection. After a short pulse of spin-polarized excitation, fast oscillations of the circular polarization degree (CPD) are observed within the relaxation oscillations. A theoretical investigation of this behavior on the basis of a rate equation model shows that these fast oscillations of CPD could be suppressed by means of a reduction of the birefringence of the laser cavity

    Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    Get PDF
    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences

    Microscopic Model versus Systematic Low-Energy Effective Field Theory for a Doped Quantum Ferromagnet

    Full text link
    We consider a microscopic model for a doped quantum ferromagnet as a test case for the systematic low-energy effective field theory for magnons and holes, which is constructed in complete analogy to the case of quantum antiferromagnets. In contrast to antiferromagnets, for which the effective field theory approach can be tested only numerically, in the ferromagnetic case both the microscopic and the effective theory can be solved analytically. In this way the low-energy parameters of the effective theory are determined exactly by matching to the underlying microscopic model. The low-energy behavior at half-filling as well as in the single- and two-hole sectors is described exactly by the systematic low-energy effective field theory. In particular, for weakly bound two-hole states the effective field theory even works beyond perturbation theory. This lends strong support to the quantitative success of the systematic low-energy effective field theory method not only in the ferromagnetic but also in the physically most interesting antiferromagnetic case.Comment: 34 pages, 1 figur
    corecore