241 research outputs found

    Enhanced imaging of microcalcifications in digital breast tomosynthesis through improved image-reconstruction algorithms

    Full text link
    PURPOSE: We develop a practical, iterative algorithm for image-reconstruction in under-sampled tomographic systems, such as digital breast tomosynthesis (DBT). METHOD: The algorithm controls image regularity by minimizing the image total pp-variation (TpV), a function that reduces to the total variation when p=1.0p=1.0 or the image roughness when p=2.0p=2.0. Constraints on the image, such as image positivity and estimated projection-data tolerance, are enforced by projection onto convex sets (POCS). The fact that the tomographic system is under-sampled translates to the mathematical property that many widely varied resultant volumes may correspond to a given data tolerance. Thus the application of image regularity serves two purposes: (1) reduction of the number of resultant volumes out of those allowed by fixing the data tolerance, finding the minimum image TpV for fixed data tolerance, and (2) traditional regularization, sacrificing data fidelity for higher image regularity. The present algorithm allows for this dual role of image regularity in under-sampled tomography. RESULTS: The proposed image-reconstruction algorithm is applied to three clinical DBT data sets. The DBT cases include one with microcalcifications and two with masses. CONCLUSION: Results indicate that there may be a substantial advantage in using the present image-reconstruction algorithm for microcalcification imaging.Comment: Submitted to Medical Physic

    Quantifying admissible undersampling for sparsity-exploiting iterative image reconstruction in X-ray CT

    Full text link
    Iterative image reconstruction (IIR) with sparsity-exploiting methods, such as total variation (TV) minimization, investigated in compressive sensing (CS) claim potentially large reductions in sampling requirements. Quantifying this claim for computed tomography (CT) is non-trivial, because both full sampling in the discrete-to-discrete imaging model and the reduction in sampling admitted by sparsity-exploiting methods are ill-defined. The present article proposes definitions of full sampling by introducing four sufficient-sampling conditions (SSCs). The SSCs are based on the condition number of the system matrix of a linear imaging model and address invertibility and stability. In the example application of breast CT, the SSCs are used as reference points of full sampling for quantifying the undersampling admitted by reconstruction through TV-minimization. In numerical simulations, factors affecting admissible undersampling are studied. Differences between few-view and few-detector bin reconstruction as well as a relation between object sparsity and admitted undersampling are quantified.Comment: Revised version that was submitted to IEEE Transactions on Medical Imaging on 8/16/201

    Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    Get PDF
    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented.Comment: Resubmitted to Physics in Medicine and Biology. Text has been modified according to referee comments, and typos in the equations have been correcte

    Toward optimal X-ray flux utilization in breast CT

    Full text link
    A realistic computer-simulation of a breast computed tomography (CT) system and subject is constructed. The model is used to investigate the optimal number of views for the scan given a fixed total X-ray fluence. The reconstruction algorithm is based on accurate solution to a constrained, TV-minimization problem, which has received much interest recently for sparse-view CT data.Comment: accepted to the 11th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine 201

    Ensuring convergence in total-variation-based reconstruction for accurate microcalcification imaging in breast X-ray CT

    Full text link
    Breast X-ray CT imaging is being considered in screening as an extension to mammography. As a large fraction of the population will be exposed to radiation, low-dose imaging is essential. Iterative image reconstruction based on solving an optimization problem, such as Total-Variation minimization, shows potential for reconstruction from sparse-view data. For iterative methods it is important to ensure convergence to an accurate solution, since important image features, such as presence of microcalcifications indicating breast cancer, may not be visible in a non-converged reconstruction, and this can have clinical significance. To prevent excessively long computational times, which is a practical concern for the large image arrays in CT, it is desirable to keep the number of iterations low, while still ensuring a sufficiently accurate reconstruction for the specific imaging task. This motivates the study of accurate convergence criteria for iterative image reconstruction. In simulation studies with a realistic breast phantom with microcalcifications we compare different convergence criteria for reliable reconstruction. Our results show that it can be challenging to ensure a sufficiently accurate microcalcification reconstruction, when using standard convergence criteria. In particular, the gray level of the small microcalcifications may not have converged long after the background tissue is reconstructed uniformly. We propose the use of the individual objective function gradient components to better monitor possible regions of non-converged variables. For microcalcifications we find empirically a large correlation between nonzero gradient components and non-converged variables, which occur precisely within the microcalcifications. This supports our claim that gradient components can be used to ensure convergence to a sufficiently accurate reconstruction.Comment: 5 pages, 4 figures, extended version of conference paper for 2011 IEEE Nuclear Science Symposium and Medical Imaging Conferenc

    GPU-based Iterative Cone Beam CT Reconstruction Using Tight Frame Regularization

    Full text link
    X-ray imaging dose from serial cone-beam CT (CBCT) scans raises a clinical concern in most image guided radiation therapy procedures. It is the goal of this paper to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. For this purpose, we have developed an iterative tight frame (TF) based CBCT reconstruction algorithm. A condition that a real CBCT image has a sparse representation under a TF basis is imposed in the iteration process as regularization to the solution. To speed up the computation, a multi-grid method is employed. Our GPU implementation has achieved high computational efficiency and a CBCT image of resolution 512\times512\times70 can be reconstructed in ~5 min. We have tested our algorithm on a digital NCAT phantom and a physical Catphan phantom. It is found that our TF-based algorithm is able to reconstrct CBCT in the context of undersampling and low mAs levels. We have also quantitatively analyzed the reconstructed CBCT image quality in terms of modulation-transfer-function and contrast-to-noise ratio under various scanning conditions. The results confirm the high CBCT image quality obtained from our TF algorithm. Moreover, our algorithm has also been validated in a real clinical context using a head-and-neck patient case. Comparisons of the developed TF algorithm and the current state-of-the-art TV algorithm have also been made in various cases studied in terms of reconstructed image quality and computation efficiency.Comment: 24 pages, 8 figures, accepted by Phys. Med. Bio

    A comprehensive study on the relationship between image quality and imaging dose in low-dose cone beam CT

    Full text link
    While compressed sensing (CS) based reconstructions have been developed for low-dose CBCT, a clear understanding on the relationship between the image quality and imaging dose at low dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot image quality and imaging dose together as functions of number of projections and mAs per projection over the whole clinically relevant range. A clear understanding on the tradeoff between image quality and dose can be achieved and optimal low-dose CBCT scan protocols can be developed for various imaging tasks in IGRT. Main findings of this work include: 1) Under the CS framework, image quality has little degradation over a large dose range, and the degradation becomes evident when the dose < 100 total mAs. A dose < 40 total mAs leads to a dramatic image degradation. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. 2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with other low mAs protocols. 3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. 4) The clinically acceptable lowest dose level is task dependent. In our study, 72.8mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.Comment: 19 pages, 12 figures, submitted to Physics in Medicine and Biolog

    Data quality considerations for evaluating COVID-19 treatments using real world data: learnings from the National COVID Cohort Collaborative (N3C)

    Get PDF
    Background: Multi-institution electronic health records (EHR) are a rich source of real world data (RWD) for generating real world evidence (RWE) regarding the utilization, benefits and harms of medical interventions. They provide access to clinical data from large pooled patient populations in addition to laboratory measurements unavailable in insurance claims-based data. However, secondary use of these data for research requires specialized knowledge and careful evaluation of data quality and completeness. We discuss data quality assessments undertaken during the conduct of prep-to-research, focusing on the investigation of treatment safety and effectiveness. Methods: Using the National COVID Cohort Collaborative (N3C) enclave, we defined a patient population using criteria typical in non-interventional inpatient drug effectiveness studies. We present the challenges encountered when constructing this dataset, beginning with an examination of data quality across data partners. We then discuss the methods and best practices used to operationalize several important study elements: exposure to treatment, baseline health comorbidities, and key outcomes of interest. Results: We share our experiences and lessons learned when working with heterogeneous EHR data from over 65 healthcare institutions and 4 common data models. We discuss six key areas of data variability and quality. (1) The specific EHR data elements captured from a site can vary depending on source data model and practice. (2) Data missingness remains a significant issue. (3) Drug exposures can be recorded at different levels and may not contain route of administration or dosage information. (4) Reconstruction of continuous drug exposure intervals may not always be possible. (5) EHR discontinuity is a major concern for capturing history of prior treatment and comorbidities. Lastly, (6) access to EHR data alone limits the potential outcomes which can be used in studies. Conclusions: The creation of large scale centralized multi-site EHR databases such as N3C enables a wide range of research aimed at better understanding treatments and health impacts of many conditions including COVID-19. As with all observational research, it is important that research teams engage with appropriate domain experts to understand the data in order to define research questions that are both clinically important and feasible to address using these real world data

    Prevalence of Chlamydia trachomatis infection among women in a Middle Eastern community

    Get PDF
    BACKGROUND: Common vaginal infections that manifest in women are usually easily diagnosed. However, Chlamydia infection is often asymptomatic, leading to infertility before it is detected. If it occurs in pregnancy, it could lead to significant neonatal morbidity. It may also play a role with other viral infections for e.g. Human Papilloma Virus in the development of cervical cancer. The objective of this study was to determine the prevalence of Chlamydia infection in women undergoing screening for cervical abnormalities as a part of a research project in primary and secondary care institutions in the United Arab Emirates. METHODS: In this cross sectional study married women attending primary and secondary care participating in a large nationwide cervical abnormalities screening survey were offered Chlamydia testing using a commercially available test kit. This kit uses a rapid immunoassay for the direct detection of Chlamydia trachomatis antigen in endocervical swab specimens. As this study was performed in a traditional Islamic country, unmarried women were excluded from testing, as the management of any positive cases would create legal and social problems. All married women consenting to take part in the study were included irrespective of age. RESULTS: Of 1039 women approached over a period of eight months 919 (88.5%) agreed to participate. The number of women in the 16 to 19 years was small (0.01%) and 30% were aged over 40 years. The prevalence of Chlamydia infection in this study was 2.6% (95% confidence interval 1.2–3.3%), which was marginally higher in women screened in secondary care (p = 0.05). CONCLUSION: This is one of the few reports on the prevalence of Chlamydia infection in women from the Middle East. Due to cultural and social constraints this study excluded a large proportion of women aged less than 19 years of age. Hence no direct comparisons on prevalence could be made with studies from the West, which all included younger women at high risk of Chlamydia. However this study emphasizes the importance of cultural factors while interpreting results of studies from different cultures and communities
    • …
    corecore