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Abstract 

Background  Multi-institution electronic health records (EHR) are a rich source of real world data (RWD) for generat-
ing real world evidence (RWE) regarding the utilization, benefits and harms of medical interventions. They provide 
access to clinical data from large pooled patient populations in addition to laboratory measurements unavailable in 
insurance claims-based data. However, secondary use of these data for research requires specialized knowledge and 
careful evaluation of data quality and completeness. We discuss data quality assessments undertaken during the 
conduct of prep-to-research, focusing on the investigation of treatment safety and effectiveness.

Methods  Using the National COVID Cohort Collaborative (N3C) enclave, we defined a patient population using cri-
teria typical in non-interventional inpatient drug effectiveness studies. We present the challenges encountered when 
constructing this dataset, beginning with an examination of data quality across data partners. We then discuss the 
methods and best practices used to operationalize several important study elements: exposure to treatment, baseline 
health comorbidities, and key outcomes of interest.

Results  We share our experiences and lessons learned when working with heterogeneous EHR data from over 65 
healthcare institutions and 4 common data models. We discuss six key areas of data variability and quality. (1) The spe-
cific EHR data elements captured from a site can vary depending on source data model and practice. (2) Data missing-
ness remains a significant issue. (3) Drug exposures can be recorded at different levels and may not contain route of 
administration or dosage information. (4) Reconstruction of continuous drug exposure intervals may not always be 
possible. (5) EHR discontinuity is a major concern for capturing history of prior treatment and comorbidities. Lastly, (6) 
access to EHR data alone limits the potential outcomes which can be used in studies.

Conclusions  The creation of large scale centralized multi-site EHR databases such as N3C enables a wide range of 
research aimed at better understanding treatments and health impacts of many conditions including COVID-19. 
As with all observational research, it is important that research teams engage with appropriate domain experts to 
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understand the data in order to define research questions that are both clinically important and feasible to address 
using these real world data.

Keywords  COVID-10, SARS-CoV-2, EHR data, Pharmacoepidemiology, Data quality, Real world data

Background
Given the unprecedented global spread and impact 
of COVID-19, researchers are urgently conducting 
research to understand the safety and effectiveness of 
treatment options [1, 2] and to understand short and 
long term sequelae of SARS-CoV-2 infection [3]. Due 
to time exigencies and financial constraints, ethical 
considerations, and the suitability of certain lines of 
inquiry, randomized clinical trials are not always feasi-
ble or necessary, and research using existing secondary 
data can offer valuable hypothesis-generating insights 
or reliable evidence as medical professionals respond to 
the pandemic [4]. In addition, inclusion of data from a 
wide array of institutions increases sample size enabling 
researchers to study less common conditions or treat-
ments, and can enhance generalizability of results. Elec-
tronic health records (EHR) are generated at the time 
of healthcare delivery as a component of clinical care. 
Structured data in EHR typically include detailed infor-
mation on clinical encounters including any procedures, 
diagnoses, ordered and administered medications, 
demographic data, vitals, and lab orders and results. 
Because the United States does not have a universal 
healthcare system, EHR data are maintained by indi-
vidual health systems, each with different standards and 
protocols for data collection and storage, leading to a 
high degree of variability in the availability and quality of 
data across systems. Even when the same EHR platform 
is used by two health systems, differences in implemen-
tation are common. This lack of centralized or standard-
ized reporting creates difficulties in using EHR at a large 
scale to conduct nationally representative research.

To enable COVID-19 research driven by data acquired 
across the United States, the National Center for Advanc-
ing Translational Sciences (NCATS) supported the crea-
tion of the National COVID Cohort Collaborative (N3C), 
a centralized repository of EHR-sourced data currently 
including over 9 million patients from 69 sites repre-
senting 49 out of 50 states that can be leveraged to study 
potential treatments and evaluate standards of care and 
best practices for COVID-19 in a real-world setting [5]. 
Compared to census data, N3C data have been shown to 
be more racially diverse, though biased towards urban 
as opposed to rural areas [6]. N3C aggregates and har-
monizes EHR data across clinical organizations in the 
United States and supports data from both harmo-
nized and unharmonized common data models (CDMs) 

including ACT, OMOP, PCORnet, and TriNetX, with 
OMOP version 5.3.1 being the target data model into 
which others are converted. Both automated and man-
ual data ingestion and harmonization protocols are in 
place which ensure source CDM conformance to specific 
requirements and fitness for use [7].

The establishment of N3C coincides with a grow-
ing interest in the use of non-trials-based real-world 
data (RWD) to inform public health policy, formulate 
testable hypotheses for designing randomized clinical 
trials, and assist in clinical decision making. Concomi-
tantly, concerns have also been raised over published 
findings using RWD that can, at times, seem contradic-
tory [8, 9]. Model and data harmonization efforts [7] in 
centralized EHR repositories are the first step towards 
answering many research questions. However, even har-
monized records may require further cleaning and pro-
cessing depending on a provider’s data capture practices 
and source data model. Furthermore, high-quality RWE 
study design requires high-quality data, which involves 
a close examination of all data streams and deep under-
standing of their limitations and the sources and mecha-
nisms behind data quality issues, such as missingness 
[10, 11]. Only then can these data be used to develop 
studies that support public health, generate viable 
hypotheses, and aid in clinical decision making. In light 
of this, our objectives were to highlight several impor-
tant areas to be examined to ensure high data quality 
and to present potential solutions and risk-mitigation 
strategies based on our experience.

Methods
The N3C data enclave systematically aggregates EHR 
data from partnering health systems, known as data part-
ners, for patients who have tested positive for COVID-
19 or have equivalent diagnosis codes according to the 
N3C phenotype. Negative controls with a non-positive 
SARS-CoV-2 lab result are also included at a 1:2 ratio 
(cases:controls). The specifics of the N3C phenotype are 
detailed on the N3C Github [12]. The final pooled data 
set includes information on hospital admissions, proce-
dures, diagnoses, medications, lab test results, demo-
graphics, and basic vitals. This research was possible 
because of the patients whose information is included 
within the data and the organizations (https://​ncats.​
nih.​gov/​n3c/​resou​rces/​data-​contr​ibuti​on/​data-​trans​

https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
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fer-​agree​ment-​signa​tories) and scientists who have 
contributed to the on-going development of this com-
munity resource. The N3C data transfer to NCATS is 
performed under a Johns Hopkins University Reliance 
Protocol #IRB00249128 or individual site agreements 
with the NIH. The N3C Data Enclave is managed under 
the authority of the NIH; information can be found at 
https://​ncats.​nih.​goc/​n3c/​resou​rces. The content is solely 
the responsibility of the authors and does not necessar-
ily represent the official views of the National Institutes 
of Health or the N3C program. Use of N3C data for this 
study does not involve human subjects (45 CFR 46.102) 
as determined by the NIH Office of IRB Operations.

Our focus was to conduct an in-depth data quality 
investigation to inform best practices for using these data 
for public health research specifically focusing on in-
hospital drug effectiveness studies. Medications received 
during an inpatient stay cannot be identified using insur-
ance claims data due to the bundling of facility charges 
in which a flat fee is charged for nursing, medications, 
supplies, etc. during each day of hospitalization. Thus, 
EHR data are potentially valuable for evaluations of drug 
utilization, safety and effectiveness in the inpatient set-
ting [13, 14]. We identify considerations relevant to a 
hypothetical study evaluating the efficacy of remdesivir 
treatment in hospitalized patients with COVID-19. We 
discuss how to appropriately define concepts of interest, 
highlight data quality considerations, and offer sugges-
tions for researchers using centralized multi-institution 
EHR-sourced data repositories.

Study population
As a base cohort for our motivating example, we identi-
fied adult patients (≥ 18 years) who were hospitalized 
with COVID-19 between March 1, 2020 and September 
1, 2021. The index date (initial observation period) was 
the first of either laboratory confirmed SARS-CoV-2 or 
the presence of at least one of several “strong positive” 
COVID-19 related diagnosis, as defined by the N3C ver-
sion 3.3 phenotype [12]. Visits were defined according 
to the macrovisit aggregation algorithm available in the 
N3C enclave which combines individual OMOP visit 
records that appear to be part of the same care experi-
ence [15]. This is crucial as clinical encounter data is 
highly heterogeneous at both the CDM and institutional 
level. We included only the first hospitalization visit for 
patients meeting the inclusion requirements. All over-
lapping inpatient and emergency department visits for a 
single patient were merged to reconstruct complete hos-
pital stays. We excluded patients with missing age or sex 
information and excluded visits shorter than 2 days. We 
also excluded patients who had positive COVID-19 test 
results predating 1/1/2020, as earlier positive results are 

implausible. Systematic missingness and other quality 
concerns in patient data outlined below further excluded 
all but 12 data partners for our in-hospital treatment 
effectiveness study. Since data suitability can vary con-
siderably depending on the research question of interest, 
we discuss the specific criteria for these inclusion in our 
analysis in the results below.

Covariate definition
A key component of observational studies using EHR 
data is the operationalization of definitions of base-
line health status and severity of illness. Character-
izing this allows us to 1) compare different treatment 
options while accounting for patient characteristics, and 
2) examine if the treatment effects vary across different 
types of patient populations. We use the term “covari-
ate” to define a variable that describes a patient and 
any relevant concepts of interest (age, sex, presence of 
health comorbidities). We focus on “baseline” covariates, 
meaning we collect information on relevant character-
istics using data from before the exposure of interest is 
measured [16]. Previous investigation has already pro-
vided evidence that these baseline characteristics, many 
of which are only available in EHR data, are highly pre-
dictive of overall disease course severity [17].

For this illustrative example, our list of covariates 
includes concepts that may be related to receipt of 
treatment for COVID-19 or risk of COVID-19 related 
outcomes, including patient demographics (age, sex, 
race, ethnicity), smoking status, patient body mass 
index (BMI), chronic comorbid conditions included 
in the Charlson comorbidity index (hypertension, 
diabetes, coronary artery disease, congestive heart 
failure, chronic obstructive pulmonary disease, cer-
ebrovascular disease, chronic kidney disease, cardiac 
arrhythmia, malignancy), and prior medication use 
(angiotensin-converting enzyme or ACE-inhibitors, 
angiotensin receptor blockers or ARBs, statins) [18]. In 
addition to characterizing chronic health conditions, 
the N3C data include lab measurements offering more 
proximal indicators related to illness severity or prog-
nosis. We collect data on creatinine, bilirubin, partial 
arterial oxygen pressure (PaO2), fraction of inspired 
oxygen (FiO2), body temperature, white blood count 
(WBC), ferritin, C-reactive protein (CRP), interleukin-6 
(IL-6), oxygen saturation (SpO2), and respiration rate 
within 2 days of the date of admission.

Data quality assessment
In the following sections, we describe our data qual-
ity findings. We first assess the proportion of miss-
ing data across covariates of interest by institution. A 
visual examination of the distribution of non-missing 

https://ncats.nih.gov/n3c/resources/data-contribution/data-transfer-agreement-signatories
https://ncats.nih.goc/n3c/resources


Page 4 of 21Sidky et al. BMC Medical Research Methodology           (2023) 23:46 

values is also carried out. Observations exceeding two 
standard deviations from the global mean are identi-
fied. We then explore drug exposures and duration of 
treatment, focusing on evidence of treatment with 
remdesivir or dexamethasone initiated within the first 
2 days of admission for COVID-19. Within OMOP, 
drug exposures are individual records corresponding to 
when a drug was ordered or administered to a patient. 
The specifics of how these data are recorded depend on 
the source data model and provider practice. We dis-
cuss the nuances of these data and how they relate to 
operationalizing definitions of exposure to medications 
during hospitalization. We then assess EHR continuity 
and its importance in capturing longitudinal care and 
ensuring adequate history for baseline health status of 
the patients included in our analyses. Subsequently, we 
examine multiple clinical outcomes of interest relat-
ing to COVID-19 hospitalizations including mortality, 
invasive mechanical ventilation, acute inpatient events, 
and composite outcomes. We discuss considerations in 
defining these events, and implications they may have 
on research.

Results
The following sections identify the main types of qual-
ity issues, the goals in addressing them, specific chal-
lenges encountered, and the approaches that were 
ultimately adopted. This is followed by suggestions for 
researchers who seek to effectively leverage EHR data 
aggregated from numerous healthcare systems.

Data missingness and reconciliation
Goal
Use the N3C database to define a cohort of interest and 
all relevant concepts (exposures, outcomes, confound-
ers of interest) to evaluate the effectiveness of COVID-19 
treatments.

Challenge encountered
Multi-site EHRs, even those in which the CDM has been 
harmonized, can display a large degree of source-specific 
variability in data availability. In particular, some data 
partners may be limited in what they can contribute due 
to restrictions of their source data model, differences 
in their extract/transform/load (ETL) processes, use of 
multiple non-integrated EHR platforms, or other non-
technical reasons. Even in data from high-completeness 
sources, missingness patterns can be particularly chal-
lenging to deal with. Therefore, identifying data com-
pleteness of the prognostic factors most relevant to the 
study is an important first step.

Approach
Vital signs and laboratory measurements which have 
previously been associated with higher clinical sever-
ity within a COVID-19 related hospital encounter [17] 
were chosen for data completeness analysis. Starting with 
vitals, data partners with high levels of data complete-
ness for oxygen saturation measurements, respiratory 
rate, body temperature, heart rate, and BMI were iden-
tified. Figure  1 shows the result of hierarchical cluster-
ing of data partners based on the percentage of patients 

Fig. 1  Percent of hospitalized COVID patients with key vitals at each of the N3C data partners. Darker colors indicate a higher percentage of 
patients with at least one measurement for the relevant vital sign during the course of their hospitalization. Arrow indicates branch of the cluster 
corresponding to retained data partners (26 total). Branches of the dendrogram which are closer together represent data partners which are more 
similar
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hospitalized with COVID-19 who had at least one value 
for those variables. Individual data partners were found 
to vary significantly in the extent to which they record 
those measurements in the study population. For exam-
ple, the proportion of patients with at least one recorded 
value for body temperature ranged from 0 to 100% with 
a median of 41.4% across 67 data partners. In some 
cases, this may be attributed to limitations inherent to 
the source data model used by the data partner. In other 
cases, data partners with data models that do support 
vitals are still missing significant portions of these data. 
Regardless of the cause, data partners with over 70% 
of missing data across these key measurements were 
excluded. This corresponded to retaining only those data 
partners belonging to the first top level cluster as shown 
in Fig. 1.

In addition to dropping sites with significant missing 
data, available metadata indicated that some data part-
ners shifted dates prior to submission to the enclave 
despite being part of the HIPAA limited (LDS) data set 
which is expected to include non-shifted event dates. 
Given the dynamic nature of the pandemic, with evolv-
ing viral variants and changing standards of care, both 
of which may affect outcomes, only partners that did 
not shift their dates beyond a week were included in 
this study.

As a second step, the degree of capture of key variable 
values and the elements of critical concept sets was eval-
uated. A concept set is defined as the presence of one or 
more of a collection of diagnoses or observations, each of 
which define the same unified clinical concept. Since one 
of the unique advantages of EHR data is access to labora-
tory data, the discussion below is focused on clinical lab-
oratory data, though much of it applies to demographic 
data and other covariates as well. Further attention was 
given to data and variables that were reasonably assumed 

to be missing not at random (MNAR) or missing at ran-
dom (MAR); most ad hoc approaches for handling data 
using only “complete case” participants is tantamount to 
the very restrictive (and typically untenable) assumption 
that data are missing completely at random (MCAR). 
Therefore, it is imperative that analysts of EHR-based 
data make use of all individuals for a given data partner 
(including those with some incomplete data) and imple-
ment appropriate methods (e.g. multiple imputation, 
weighting) to address incomplete data capture within 
some individuals to better appeal to less restrictive MAR 
assumptions [19].

Figure  2 shows missingness of key labs and measure-
ments among the population of hospitalized COVID-19 
patients as a function of data partner and time. Tempo-
ral missingness patterns were evident, as was reporting 
heterogeneity among data partners. Some data partners 
did not appear to report certain key concepts at all. 
Due to the importance of these variables for establish-
ing disease severity, data partners with (a) a proportion 
of missing data exceeding two standard deviations of the 
global proportion or (b) temporal variance exceeding two 
standard deviations of the global temporal variance were 
eliminated.

For the remaining data partners, Table 1 shows meas-
urements for additional parameters of interest among 
the population of hospitalized COVID-19 patients, on a 
per-patient basis. Notably, substantial amounts of miss-
ingness across several measures that may be predictive of 
COVID-19 severity were seen. Interleukin-6 (IL-6) and 
oxygenation index (PaO2/FiO2) were missing in over 97% 
of hospitalizations and C-reactive protein and ferritin 
over 98% of the time; despite all four being identified as 
risk factors for COVID-19 related mortality [20]. This is 
not unsurprising as they are not collected routinely in the 
context of standard of care, and in fact are more likely to 

Fig. 2  Fraction of missing data for key labs and measurements as a function of pandemic month and data partner
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be collected or recorded for individuals in critical condi-
tion. However, data were also frequently missing for sev-
eral parameters that would be expected to be available for 
patients hospitalized with COVID-19. These data under-
score the difference between EHR data and data sets pop-
ulated with results systematically collected in the context 
of prospective clinical trials and epidemiologic cohorts 
(study contexts with more clearly delineated best practice 
for accommodating missing values; for example, see the 
National Research Council panel report on clinical tri-
als, https://​pubmed.​ncbi.​nlm.​nih.​gov/​24983​040/ or the 
PCORI Methodology Committee standards).

Following this close examination of data missingness 
by data partner, 15 out of 67 sites (43,462 out of 307,193 
patients) remained in our analysis. While retaining only 
22% of data partners significantly reduces the sample 
size, the strict criteria ensured a more internally valid 
population, avoiding potential biases related to missing 
values’ impact on downstream analyses.

Takeaway / suggestions for researchers
When working with a large heterogeneous dataset that 
integrates data from many individual health systems, 
it is prudent to consider which hospital systems or data 
partners are appropriate for the analysis at hand, with 
their respective extent of data missingness as a key con-
sideration. For each specific research question, it will be 
important to think critically about what will be important 
to measure, to evaluate how these variables and concepts 
are reported across data partners, and potentially exclude 
partners that do not meet these question-specific criteria.

Drug exposure
Drug code sets
Goal
Evaluate the use of therapeutic medications administered 
to hospitalized COVID-19 patients.

Challenge encountered
A significant amount of variability was found in drug 
exposure data due to flexibility in the data model speci-
fication. Depending on how the drug was coded, dosage 
information may or may not be available. If an active 
ingredient was coded at the ingredient level, dose and 
route of administration information were frequently 
missing with strength entirely missing. Continuing with 
the working example of remdesivir, Table  2 shows the 
distribution of drug concept names for the descendants 
of the RxNorm ingredient class code remdesivir. The vast 
majority (88.5%) are coded at the ingredient level with 
no available route of administration nor dosage avail-
able. This is not particularly problematic for the route 
of administration since remdesivir is only administered 
intravenously and has a well-defined dosage, though 
duration of therapy might vary in clinical practice.

These challenges, however, were more of an issue when 
looking at other drug exposures, such as dexamethasone, 
which can be administered in a variety of dosages, routes, 
and strengths (Table 3).

Approach
Given that remdesivir has a well-defined dosage, treat-
ment was able to be defined broadly without relying on 
any dosage data. Adjustments for dexamethasone treat-
ment in the analysis of outcomes among patients treated 
with remdesivir were based on binary indicators of 
whether dexamethasone was administered at any dose. 
This was considered sufficient for questions focused on 
the effectiveness of remdesivir. Studies where an under-
standing of dexamethasone dosage is important may 
need to take further measures such as performing a sen-
sitivity analysis, as the clinical effects of dexamethasone 
can vary significantly based on dose, duration and route 
of administration.

Table 1  Characteristics of patients with a COVID-19 related 
hospitalization (N  = 43,462). Each record represents a unique 
patient. Missingness is defined as the lack of any record of the 
variable of interest during the entire duration of the visit for that 
patient

Variable Non-Missing Missing (%) Median value (IQR)

BMI 33,120 10,342 (23.8) 29 (25, 35)

Creatinine 18,610 24,852 (57.2) 0.94 (0.73, 1.40)

Bilirubin 8411 35,051 (80.6) 0.50 (0.37, 0.70)

PaO2 465 42,997 (98.9) 79 (71, 90)

FiO2 1047 42,415 (97.6) 0.69 (0.52, 0.83)

Body tempera-
ture

38,065 5397 (12.4) 36.8 (36.7, 37.0)

WBC 15,021 28,441 (65.4) 7.8 (5.6, 10.7)

Ferritin 781 42,681 (98.2) 555 (270, 1116)

CRP 1411 42,051 (96.8) 52 (23, 98)

IL-6 <  20 > 43,000 (100) 34.5 (32.6, 34.9)

O2 saturation 39,030 4432 (10.2) 95.0 (93.8, 96.5)

Respiration rate 39,041 4421 (10.2) 19.1 (18.0, 21.0)

Table 2  Distribution of drug concept names for Remdesivir in 
patient population

Drug concept name N (%)

remdesivir 20,762 (88.5%)

remdesivir 100 MG Injection 2471 (10.5%)

remdesivir Injection 187 (0.80%)

20 ML remdesivir 5 MG/ML Injection 30 (0.13%)

https://pubmed.ncbi.nlm.nih.gov/24983040/
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Takeaways / suggestions for researchers
Due to inconsistent reporting in drug exposure data, it 
may be difficult to characterize drug dosing. Depending 
on the research question being asked, it is possible to 
be more or less sensitive using the available drug meta-
data at the expense of selectivity. For example, using 
the ingredient code and all descendants will be highly 
sensitive, but will not be specific to an individual dose, 
strength, or route. If dosing is important, it may be nec-
essary to conduct a study only among data partners that 
reliably report dosage. When data on dose or route are 
missing, it is further essential to carefully consider other 
clinical factors such as bioavailability and/or the extent 
to which the standard dose has been agreed upon in 
clinical practice.

Duration of drug exposure
Goal
Understanding the duration of patient exposure to a par-
ticular treatment.

Challenge encountered
Within the OMOP data model, a “drug era” is defined as 
a continuous interval of time over which a patient was 
exposed to a particular drug. OMOP defines its own 
derived drug era table based on drug exposures, but 
relies on certain rules which may not be suitable for all 
situations. For example, two separate drug exposures 
separated by a gap of 30 days or less are merged into 
a single era. This persistence window may be suitable 
under some circumstances, such as for outpatient expo-
sures to chronic medications, but it is inappropriate for 
short-term inpatient acute care. Consequently, manually 
generating drug eras is often required. When doing so, it 
is important to consider the variability in the drug expo-
sure records found in N3C.

How drug exposure data are presented and some of the 
issues to consider for remdesivir are illustrated below. 
Table 4 shows the first common drug exposure scenario 
encountered, where there are duplicate rows each day 
representing the same exposure for a particular patient. 
The exact reason for the duplication can vary; in some 
cases one row may represent the drug order and the other 
the administration. This scenario is typically character-
ized by the presence of a single bounded one-day interval 
and secondary unbounded interval sharing the same start 
date. In the scenario below, the total number of exposure 
days is 5, which is typical for a remdesivir course. Table 5 
presents an alternative scenario where drug exposures 
are combined into contiguous multi-day intervals. It is 
also the case that some entries may be erroneous, indi-
cating an exposure start date after the end date; those 
entries should be discarded. In the example below, we 
see that ignoring the unrealistic entry still yields a 5-day 
course, but that is not always the case.

The two examples presented are not representative 
of all possible scenarios encountered in N3C, but they 
show the two most common documentation paradigms: 
in some cases exposures were single day with or with-
out end dates, and in other cases drug exposures were in 
fact presented as multi-day intervals. The main task was 

Table 3  Distribution of drug concept names for dexamethasone 
in patient population

Drug concept name N (%)

dexamethasone 7442 (40.9%)

dexamethasone 2 MG Oral Tablet 6342 (34.8%)

dexamethasone 0.5 MG Oral Tablet [Decadron] 2179 (12.0%)

dexamethasone 0.5 MG Oral Tablet 1811 (9.94%)

dexamethasone 1 MG/ML Oral Solution [Dexamethasone 
Intensol]

166 (0.91%)

dexamethasone 1 MG/ML Oral Solution 154 (0.85%)

dexamethasone 0.1 MG/ML Oral Solution 91 (0.50%)

dexamethasone 0.1 MG/ML Oral Solution [Baycadron] 27 (0.15%)

dexamethasone 0.1 MG/ML Oral Solution [Decadron] <  20

Table 4  Sample single-day drug exposures for a single patient 
illustrating the presence of duplicate drug exposure start dates

Drug exposure start date Drug exposure end date

12/31/2020 12/31/2020

12/31/2020

12/31/2020

12/31/2020 12/31/2020

12/31/2020 12/31/2020

01/01/2021

01/01/2021

01/01/2021 01/01/2021

01/01/2021 01/01/2021

... ...

01/04/2021 01/04/2021

Table 5  Sample multi-day drug exposures for a single patient 
containing reversed start and end dates

Drug exposure start date Drug exposure end date

2020-11-23 2020-11-24

2020-11-24 2020-11-23

2020-11-24 2020-11-27
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dealing with duplicate values, unrealistic start and end 
dates, other data quality issues, and consolidating con-
tiguous intervals into drug eras.

Our approach
Data were reviewed closely (findings described briefly 
above), and custom programmatic data cleaning was 
implemented for every scenario encountered. Remain-
ing open intervals were treated as single day exposures. 
Consolidating drug exposures did not alleviate all drug 
era data quality concerns. Figure 3a shows the distribu-
tion of remdesivir treatment duration. Over half [55%] 
of patients appear to have received only a single day of 
treatment. This is unusual as remdesivir has a very spe-
cific recommended course of either 5 or 10 days. There 
is a secondary large peak at the 5 day mark and a minor 
additional peak at 10 days. To evaluate the possibility 
that those treatment courses were terminated early due 
to mortality or discharge, instances where the final day of 
treatment coincided with either of those two events were 
removed. This did not significantly affect the results, as 
shown in Fig. 3b, with no treatment duration proportion 
changing by more than 5%.

Further investigation into the drug exposure meta-
data reveals that over 80% of single-day exposures report 
“Inferred from claim” for drug type concept name. The 
metadata for the remaining entries recorded “EHR”, many 
of which were duplicates, or were empty. These may be 
the result of incorrectly tagged billing records, but do 
indicate treatments that were not directly logged into the 
EHR. The split across data partners was not even; a sin-
gle data partner was responsible for 73% of the single-day 
records, with the remaining are split across an additional 

10 partners; other data partners did not record single 
day exposures. Another possibility is that some propor-
tion of these single day exposures are the result of early 
treatment termination due to adverse drug reactions. 
However, this was considered unlikely due to the connec-
tion with the “inferred from claim” concept name. It is 
always possible to drop the offending data partners at the 
expense of statistical power; in this instance, however, the 
data partner with the largest number of single-day expo-
sures contained 36% of all remdesivir treated patients in 
our population.

Takeaways / suggestions for researchers
The inability to properly resolve treatment durations 
severely limits the use of methods such as time-depend-
ent Cox regression or marginal structural models for the 
study of time-varying effects of treatments or exposures. 
Consultation with clinical experts was also found to be 
critical to understand realistic use patterns of the medi-
cation under study and identify irregular treatment dura-
tion reporting. Given the inconsistencies in the data and 
necessary assumptions to process these data, researchers 
should consider conducting sensitivity analyses using dif-
ferent assumptions to understand the impact of assump-
tions on results.

As a final note regarding drug exposures, this discussion 
has focused on the situation where drug dosing, route of 
administration, and medication reconciliation were not 
important. If that information is critical to a particular 
study, then the drug exposure data require further pro-
cessing and refinement. This is beyond the scope of this 
work, but a separate contribution is being prepared where 
drug exposures are discussed in greater detail.

Fig. 3  Distribution of remdesivir treatment durations for (a) all treated patients and (b) patients whose treatment did not terminate with discharge 
or death
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Baseline medical history
Goal
Assess patient characteristics among remdesivir-treated 
and non-treated patients and adjust for relevant con-
founders based on patient histories by summarizing 
comorbidities identified during a baseline period prior to 
hospital admission.

Challenge encountered
While EHRs can be a rich source of clinical information 
that is collected prospectively at the time of health care 
delivery, they often do not contain medical informa-
tion related to encounters or treatments occurring out-
side of the contributing healthcare system or prior to 
an initial encounter. This has been described previously 
by Lin et  al. as EHR-discontinuity [21]. While informa-
tion exchanges do exist, such as Epic CareEverywhere 
or Health Information Exchange, there are no guaran-
tees on availability of such records for research pur-
poses. If hospitalized patients typically receive primary 
health care services from a health system other than 
that of the admitting hospital, then any prior treatments, 
medications, immunizations, diagnoses, etc. may not be 
reflected in the EHR from the system where the COVID 
hospitalization occurred. Because the patients’ records 
from other health systems are not included, it may falsely 
appear that these patients do not have comorbidities or 
prior treatments. This can result in the misclassifica-
tion of risk scores such as the Charlson Comorbidity 
Index [22]. This is distinctly different from continuity 
issues arising due to lack of care access or patients who 
avoid seeing medical care. Regardless, comorbidities, 
prior treatments, or other covariates commonly used for 
adjustment in observational research are often presumed 
to be absent if no records are present. This is particularly 
problematic for studies in acute or critical care settings 
where admitted patients may have received routine care 
prior to their admission at an unaffiliated healthcare 
practice for conditions that may affect outcomes.

The significance of EHR-discontinuity in N3C was 
evaluated by first looking at the availability of prior his-
tory among the hospitalized patient population. Prior 
history was defined as the number of months between 
a patient’s earliest recorded visit of any kind and first 
COVID-related admission, which would represent the 
study setting for evaluation of remdesivir effectiveness. 
Figure  4 shows the resulting distribution of months of 
prior history in the patient population. There are 12,523 
patients, representing nearly 30% of the total population, 
which have no record of visitation prior to their hospi-
talization. Of those patients (22.5%) with at least 1 prior 
visit, the duration of history is approximately uniformly 

distributed up to 23 months, with a substantial fraction 
(49%) having ≥24 months (maximum possible in N3C).

The characteristics of patients with no history, 
1-23 months of history, and 24 months or greater his-
tory are shown in Table  6. There is a statistically signifi-
cant difference in every characteristic between the three 
groups. Patients with maximum available history are older 
(median age, 65 [IQR, 52-77] years vs 60 [IQR, 43-73] and 
59 [IQR, 45-71] years of age for 1-23 months and no his-
tory, respectively) and are more likely to have documented 
comorbidities. They are more likely to have recorded med-
ication use for cardiovascular disease (i.e. ACE inhibitors, 
ARBs, and statins) and are also more likely to be female 
(11,190 [53%] vs 4894 [50%] and 4862 [39%]). The gender 
imbalance is consistent with the observation that females 
are more likely to seek out medical care than males [23].

Despite being a significantly younger group and 
appearing to have lower prevalence of known risk-factors 
for severe COVID-19 [24, 25], both ventilation on admis-
sion (2361 [19%] vs 894 [9.1%] and 1852 [8.8%] for 1-23 
and 24+ months respectively) and in-hospital mortal-
ity among patients with no history is higher (1785 [14%] 
vs 1058 [11%] and 2390 [11%] for 1-23 and 24+ months 
respectively). These patients may represent a heterogene-
ous mixture of individuals who were previously healthy 
(truly without comorbidities), patients who received rou-
tine care elsewhere (comorbidities present, but data are 
missing due to healthcare fragmentation), and patients 
with unmet medical need (comorbidities present but 
not documented in any health system due to poor access 
to healthcare). Researchers will need to be aware of 

Fig. 4  Distribution of months of prior history for first-time COVID 
19-related hospitalized patients. Nearly 30% of patients have no 
recorded visits prior to their admission. Note that N3C patient history 
lookback was limited to records no older than 1/1/2018. Therefore, all 
patients with 24 months of history or greater were grouped together
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potential information bias in estimated treatment effects 
among hospitalized patients that may be present if differ-
ences in EHR continuity are not properly accounted for 
in analyses.

To better understand the magnitude of the differences 
associated with EHR continuity, the standardized mean 
differences (SMDs) were calculated between patients 
with and without any prior history, with magnitude less 

Table 6  Characteristics of COVID-19 related hospitalized patients, by months of prior available history

Abbreviations: CAD Coronary artery disease, CHF Congestive heart failure, COPD Chronic obstructive pulmonary disease, CKD Chronic kidney disease, ACEI 
Angiotensin-converting enzyme inhibitor, ARB Angiotensin 2 receptor blocker
a Statistics presented: n (%)
b Statistical tests performed: Kruskal-Wallis test; chi-square test of independence
c Invasive mechanical ventilation and ECMO were defined as the terms included in the concept sets provided in supplemental Tables S1 and S2

Variable No history
N = 12523a

1-23 mo history
N = 9784a

24+ mo history
N = 21155a

p-valueb

Age < 0.001

  18-49 3956 (32%) 3154 (32%) 4415 (21%)

  50-59 2485 (20%) 1550 (16%) 3462 (16%)

  60-69 2663 (21%) 2021 (21%) 4595 (22%)

   ≥ 70 3419 (27%) 3059 (31%) 8683 (41%)

Sex < 0.001

  Female 4862 (39%) 4894 (50%) 11,190 (53%)

  Male 7661 (61%) 4890 (50%) 9965 (47%)

Race < 0.001

  Asian 566 (4.5%) 359 (3.7%) 603 (2.9%)

  Black or African American 2337 (19%) 2147 (22%) 5106 (24%)

  White 5617 (45%) 4893 (50%) 12,418 (59%)

  Other/Unknown 4003 (32%) 2385 (24%) 3028 (14%)

Ethnicity < 0.001

  Hispanic or Latino 3226 (26%) 2278 (23%) 3107 (15%)

  Not Hispanic or Latino 8133 (65%) 6852 (70%) 17,559 (83%)

  Unknown 1164 (9.3%) 654 (6.7%) 489 (2.3%)

BMI < 0.001

   < 25 2060 (16%) 1944 (20%) 3968 (19%)

  25-29 2756 (22%) 2149 (22%) 4575 (22%)

  30-34 2162 (17%) 1660 (17%) 3462 (16%)

  35-39 1196 (9.6%) 891 (9.1%) 2006 (9.5%)

   ≥ 40 1162 (9.3%) 912 (9.3%) 2217 (10%)

  Missing 3187 (25%) 2228 (23%) 4927 (23%)

Hypertension 5605 (45%) 5729 (59%) 15,576 (74%) < 0.001

Diabetes 4173 (33%) 3524 (36%) 9612 (45%) < 0.001

CAD 1380 (11%) 1837 (19%) 6321 (30%) < 0.001

CHF 1690 (13%) 2045 (21%) 6424 (30%) < 0.001

COPD 924 (7.4%) 1168 (12%) 3888 (18%) < 0.001

Cerebrovascular disease 848 (6.8%) 1149 (12%) 4059 (19%) < 0.001

CKD 1637 (13%) 2183 (22%) 7303 (35%) < 0.001

Cardiac arrhythmia 3636 (29%) 3386 (35%) 9942 (47%) < 0.001

Tobacco smoking 770 (6.1%) 1142 (12%) 2506 (12%) < 0.001

Malignancy 744 (5.9%) 1578 (16%) 4452 (21%) < 0.001

Prior ACEI treatment 494 (3.9%) 1431 (15%) 5284 (25%) < 0.001

Prior ARB treatment 391 (3.1%) 1067 (11%) 4071 (19%) < 0.001

Prior statin treatment 829 (6.6%) 2551 (26%) 9475 (45%) < 0.001

Ventilated on admissionc 2361 (19%) 894 (9.1%) 1852 (8.8%) < 0.001

In-hospital mortality 1785 (14%) 1058 (11%) 2390 (11%) < 0.001
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than 0.1 indicating negligible difference between groups 
(Fig.  5) [26, 27]. Chronic conditions and related treat-
ments display the greatest differences since they are most 
likely recorded in a primary care context. We additionally 
examined potential temporal or location effects. Figure 6 
shows the relationship between pandemic timing, data 
partner ID, and history of missingness in more detail. 
This is an important step to help identify if there are any 
specific patterns in prior history missingness that may 
need to be handled separately. For example, data partners 

13 and 6 have a lower level of missingness than others 
throughout the pandemic while data partner 16 displays 
a highly irregular pattern of no missingness on most 
months and a high degree of missingness on others (7/20 
and 6/21). These temporal patterns may be the result of 
upgrades or changes to EHR systems that occurred dur-
ing the pandemic, the addition or removal of clinics or 
hospitals in a particular health system, or a potential 
change in record keeping practices during peak times in 
the pandemic when healthcare systems were stressed.

Fig. 5  Standardized mean differences between patient characteristics, pandemic timing, and data partner ID, for patients with and without prior 
history. The largest differences are observed for chronic conditions and their treatments. Missing demographic information such as race and 
ethnicity also display large differences
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Approach
Due to EHR discontinuity, it can be challenging to clas-
sify traditional baseline health comorbidities in the pop-
ulation of interest. However, in N3C, the availability of 
laboratory measures from the index COVID-19 hospi-
talization can be leveraged, relying more heavily on these 
proximal clinical measures to characterize illness sever-
ity and prognosis. When estimating treatment effects, 
one valuable strategy that does not require an additional 
modeling is to perform a sensitivity analysis to under-
stand the impact of EHR-continuity on the estimand. 
The general protocol for performing this analysis would 
be as follows: first, an initial analysis would be performed 
including only those patients whose EHR-continuity can 
be established. Then, the influence of EHR-discontinuity 
would be assessed by sequentially introducing groups 
with less prior history; in the N3C, the data include two 
additional groups, 1-23 months of prior history, and no 
prior history. As noted previously with the differences in 
on-admission ventilation and in-hospital mortality, the 
groups may not reflect the same patient population. If 

sample size allows, calculating effect estimates separately 
within groups could also be informative to evaluate the 
presence of effect measure modification over patient his-
tory, or whether treatment effects vary by severity.

Takeaways / suggestions for researchers
EHR discontinuity poses a challenge in the use of multi-
institution EHR data, limiting the ability to control for 
confounding by baseline comorbidities. However, sever-
ity of illness upon hospitalization is likely one of the most 
important confounders in studies of COVID-19 treat-
ment. The N3C data do have the unique advantage of 
having laboratory results and other measurements from 
the index admission, although, as noted in Table 1, these 
data may be missing from certain sites. These detailed 
clinical data measured at index admission can be used 
as more proximal measures to account for differences in 
severity of illness across patients, and may be more rel-
evant than many chronic comorbidities that are more dif-
ficult to measure [17]. When using the a multi-site EHR 
database, researchers will need to consider the specific 

Fig. 6  Heatmap showing fraction of patients with no history as a function of pandemic timing and data partner ID
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research question at hand, what baseline confounders 
will be important to measure, and how much history is 
needed to reliably measure confounders of interest. If 
proximal variables that are readily available are not suf-
ficient and baseline conditions are necessary to account 
for, researchers may consider requiring a history (or den-
sity) of visits within the database and can refer to prior 
work that described these strategies in detail [21].

Clinical outcomes
The effect of remdesivir on in-hospital death, mechani-
cal ventilation, and acute inpatient events were the focus 
of this work which are all key outcomes of interest in 
COVID-19 research.

Mortality
Goal
Understanding the risk of mortality among patients hos-
pitalized with COVID-19.

Challenge encountered
Patient death data in N3C is primarily obtained from the 
EHR. Incorporating external mortality data through pri-
vacy preserving record linkage (PPRL) has begun. Until 
this process is complete, only deaths that occur during 
hospitalizations are guaranteed to be captured. Patient 
deaths that occur after a patient is discharged home or to 
another facility are not guaranteed to be captured, result-
ing in an underestimation of overall mortality. Any out-
come involving death can only characterize in-hospital 
mortality. There are rare circumstances where patients’ 
families report death to a data partner after patient dis-
charge which may be recorded. In those situations, the 
recorded death date falls outside of the visit date range.

Data quality is another important consideration when 
using mortality data in N3C. Figure  7 shows the differ-
ence in days between recorded death dates and visit end 
dates for patients in the selected population who have 
died. Deaths were excluded for patients who had any 
record of subsequent visits, which can arise due to billing 
artifacts. A difference of zero represents deaths that were 
recorded on the same day as the end of the visit and con-
stitute the majority of deaths. Because timestamps are 
not always available for visit end and death dates, we limit 
ourselves to day-level resolution. Depending on the time 
of day, a small difference in when a death was recorded 
and when a visit was ended can result in them occur-
ring on different days. As a result, deaths recorded a day 
before or a day after the visit end date are to be expected. 
Therefore, it may be justifiable to consider deaths occur-
ring a day after a visit end date as in-hospital deaths.

This leaves both deaths that occur two or more days 
prior to or after the visit end date. As for the former, they 
are extremely rare, numbering in the single digits. They 
can be excluded as part of data quality checking and 
may be the result of data entry or other sources of error. 
Deaths which are reported days after a visit end date and 
are not directly connected to a recorded visit are more 
numerous. This asymmetry suggests that it is unlikely 
that the same mechanism is behind both early and late 
death dates. It may be that some data partners are receiv-
ing additional data on deaths which occur outside of their 
facilities following hospitalization. However, since there 
are no specific guidelines or requirements for out-of-hos-
pital mortality reporting within N3C, it cannot be relied 
on for analysis. Therefore, it is best to treat those patients 
as not having experienced in-hospital mortality for that 
visit because this supplementary death data was not sys-
tematically available.

Approach
Due to the inability to reliably study deaths that occur 
out-of-hospital, the outcome was carefully defined for 
this analysis as inpatient death within 28 days. Patients 
who died more than a day before discharge were dropped, 
and mortality for patients who died greater than 1 day 
past their visit end date was not considered.

Takeaways/suggestions for researchers
Researchers should be familiar with the limitations in 
studying mortality in multi-site EHR repositories. Unless 
complete linkage to external mortality data is present, 
the data only reliably capture deaths that occur during 
hospitalization. Any studies reporting risks of mortality 
using these data will need to be explicit in how mortal-
ity is defined, and consider the implications of studying 

Fig. 7  Distribution of difference (in days) between death date and 
visit end date for patients who died
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only in-hospital mortality. To assess the impact of this 
limitation on estimates of risk, researchers can consider 
conducting sensitivity analyses, comparing mortality risk 
estimates when patients are censored at a fixed follow-up 
duration. Alternatively, discharge can be directly treated 
as a competing risk using competing risk methods such 
as the Fine-Gray subdistribution hazard model or cumu-
lative incidence functions [28–30]. Within N3C, post-
discharge mortality data has recently become available 
through PPRL which largely addresses this issue. How-
ever, it still remains a common problem in EHR-based 
research where external linkage may not be available.

Acute inpatient events
Goal
Understanding how to distinguish acute events related 
to complications of initial cause of hospitalization from 
adverse events of treatment.

Challenge encountered
Common acute events occurring during hospitalization 
range from DVT/PE, myocardial infarction (MI), stroke, 
pulmonary edema, and allergic reactions to common 
infections such as bacterial pneumonia, urinary tract 
infection (UTI), or sepsis. Identifying such acute events 
accurately from EHR data can be challenging for a few 
reasons. First, ensuring that these events have acute onset 
and do not represent previous medical history carried 
forward into the visit requires detailed record checking. 
While OMOP does provide a field for supplying condi-
tion status (eg. “Primary diagnosis”, “Secondary diag-
nosis”, “Final diagnosis (discharge)”, “Active”, “Resolved”, 
etc.…), it is rarely populated in N3C and thus not suitable 
for analysis. Second, parsing out diagnoses occurring as 
a response to treatment versus those that are the reason 
for receiving a treatment is complicated by the absence 
of sufficiently high temporal resolution and detailed clini-
cal information which is typically buried in unstructured 
EHR data. Third, suspected or differential diagnoses can 
potentially be misclassified when identifying an acute 
event by diagnosis codes.

Approach
First, the presence of the outcome prior to hospitaliza-
tion is checked. Due to variability in EHR entry, some 
data partners record previous medical history daily dur-
ing a patient’s visit, which eliminates the ability to differ-
entiate between a new or recurring event. For example, a 
patient with a previous medical history of MI may have 
this diagnosis in their medical record. For each day dur-
ing the patient’s hospitalization, their medical history is 
carried forward and displays a diagnosis of MI. However, 

this does not represent the patient having a new MI on 
a daily basis. Such scenarios can be identified by calcu-
lating the number of events recorded per day throughout 
the visit. If the event of interest occurs at least daily, these 
patients cannot be considered to have experienced that 
acute event.

Timing of the outcome is also important. When 
assessing the safety and effectiveness of a treatment, 
confirming that the acute event occurred as a response 
to treatment is required. Although identifying cause 
and effect is challenging, steps can be taken to mitigate 
errors. Once patients who were identified to have had a 
previous medical history of an event were excluded, it 
was ensured that the event occurred after the treatment 
of interest. More generally, appropriate time windows 
should be considered based on anticipated effects of the 
drug or procedure. Any patients who have an outcome 
prior to treatment should be excluded.

Takeaways/suggestions for researchers
Researchers will require detailed assessment of acute 
event outcomes to ensure they do not represent prior 
events carried forward. Additional data can be helpful 
to ensure accurate detection of acute events. Confirm-
ing events with lab results when available can further 
increase confidence in detecting the outcome. For exam-
ple, MI diagnosis with corresponding elevated troponin 
can improve specificity of capture. Events without 
explicit lab findings can be supported with related pro-
cedures. The level of sensitivity vs specificity is depend-
ent on the study objectives and can be further assessed 
through a sensitivity analysis.

Composite outcomes
Composite outcomes, such as in-hospital death or dis-
charge to hospice, incorporate information from the dis-
charge disposition. Unfortunately, discharge disposition 
reporting is very rare, with some CDMs lacking support 
altogether (Fig. 8). Therefore, they are best avoided, or, if 
strictly necessary, should be limited to data partners who 
undergo consistency and completion checks.

Discussion
N3C offers a significant step forward in providing access 
to integrated national-level EHR data which serves as a 
source for RWE that can help guide both public health 
policy, future prospective controlled clinical trials, and 
clinical decision making. It is part of a broader trend 
in which sources of RWD are consolidated into larger 
repositories for research purposes. This enables large-
scale validation of findings across multiple health sys-
tems, the ability to achieve sufficient statistical power 
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when investigating treatments and conditions with low 
prevalence, and improve equitability and representa-
tion of underserved hospitals and patient demographics 
in treatment effect studies. In addition, large data sets 
provide an opportunity for the deployment of machine 
learning methods while mitigating the risk of overfitting. 
As a centralized repository, N3C aggregates and harmo-
nizes data in a single location. While this comes with its 
own challenges, it allows the data to be queried at the 
row level and enables detailed centralized investigations 
into data quality such as those presented here. This is in 
contrast to federated data models which allow data to 
be queried in aggregate, but rely on data curation at the 
local level [7]. Nevertheless, operationalizing definitions 
for key clinical events can be complicated by limitations 
in site reporting and a loss of granularity through the 
use of a common data model to harmonize data across 
partners. The advantages of harmonization, however, 
outweighs the loss of granularity when addressing many 
research questions. The efficiency of centralization is 
also a significant advantage and was witnessed through 
the course of this study. For example, a number of sites 
using the ACT CDM initially did not have the ability to 
report vitals, but subsequently these data were made 
available due to continuous feedback during the review 
process. Sites are provided with data quality metrics and 
furnished with support to help address gaps or deficien-
cies, when possible.

The promise of data enclaves such as N3C are clear, 
yet it remains imperative to consider the limitations of 
the data and ensure that they are fit for purpose. Data 
missingness, for example, remains a significant analyti-
cal challenge. It may be reasonable to suspect that many 
of the lab measurements investigated in this study are 
informatively missing, in that they are clinically indicated 
(and thus ordered) only in the most severe patient cases. 
Yet, this may be confounded by individual data-con-
tributing health systems’ respective capacities to obtain 
these measures at a given point in time (e.g., clinicians 
faced with an overwhelming caseload during pandemic 
‘peaks’ may have inferred a level of clinical severity in 
some patients without ordering/recording such meas-
ures once seeing it repeatedly in other clinically simi-
lar cases). This suspected mixture of missing at random 
(MAR) and missing not-at-random (MNAR) mecha-
nisms, likely varying over time within each data partner 
health system, presents a challenge to data analysts who 
⏤ in trying to delineate between instances of informa-
tively vs. inadvertently missing values ⏤ cannot directly 
access subject-matter experts (such as clinical care pro-
viders experienced in each health system during each 
time interval under study) to form the reasonably defen-
sible assumptions required, assumptions not verifiable 
from EHR data alone [31]. With many severity-of-illness 
indicators, it is common to create derived factors and 
missing data indicators. For example, body temperature 

Fig. 8  Top ten most frequently occurring discharge dispositions across all data partners
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may be used to create a three-level factor: “Normal tem-
perature (<= 38 deg C)”, “Fever (> 38 deg C)”, and “Miss-
ing.” However, this approach has been shown to exhibit 
severe bias even with MAR data [32]. The danger of this 
approach becomes even more evident when glancing at 
data missingness as a function of data partner and time 
shown previously in Fig.  2. A more principled variation 
on this approach is forming distinct (collections of ) addi-
tional variable(s) indicating the missing value status for 
each variable in any given analysis; conditioning on these 
indicators in downstream analyses would make explicit 
the assumptions inherent to how those with missing 
values may be plausibly assumed to differ from those 
without missing values for the variables prone to miss-
ingness (and would inform analysts how to elicit plau-
sible assumptions from domain experts, by considering 
these ‘full’ data).

Excluding sites which are major contributors to 
data missingness does not eliminate all missing data, 
and there are outstanding issues that still need to be 
addressed. Here, considering the different possible mech-
anisms responsible for missingness is necessary. One 
contribution to overall missingness involves mechanisms 
reasonably assumed to be MCAR (an effectively ran-
dom sample of individuals from included sites still lack 
values expected to have been recorded), while another 
likely contribution is disease severity. This mechanism 
is closely related to what is termed in the statistical lit-
erature as outcome-dependent observation processes 
[33–35]. Labs are usually ordered in sets, with complete 
blood count (CBC) and basic metabolic panel (BMP) 
being the most common, followed by complete metabolic 
panel (CMP). For COVID-19 positive patients, some 
providers may add CRP, d-dimer, and ferritin to CBC 
and BMP panels. Importantly, all of these orders vary 
depending on patient condition, provider practice, and 
standards of care - all of which may vary throughout the 
course of the pandemic; thus more tenable assumptions 
can be adopted (at least approximately, to mitigate bias) 
after considering how analyses incorporate care settings 
(from healthcare-system down to clinic/provide levels) as 
well as calendar time as proxy measures for such system-
atic differences. Similar MNAR mechanisms have been 
identified in end-of-life care studies where questionnaire 
missingness is related to poorer health status [36].

In isolation, the labs as described above are MNAR 
since the decisions made to order specific labs are often 
based on existing clinical information. If the probability 
of observing a covariate can be assumed to not depend 
on its value after conditioning on other observables, then 
that covariate is considered MAR. This is often difficult 
to assume – let alone empirically verify from available 
data – in practice, without supplemental auxiliary data, 

but a detailed look at key conditional distributions com-
bined with domain expertise can justify the adoption of 
MAR assumptions. In that case, a number of techniques 
including multiple imputation and inverse probability 
weighting exist to handle said missingness under spe-
cific assumptions, though special attention needs to be 
paid to both the model specification and algorithm [37]. 
Finally, although complete-case analysis is used by some 
practitioners in these settings, omitting records with any 
missing data among variables associated with exposures/
confounders or outcomes is known to bias effects esti-
mates and, at best, reduce precision [32, 38].

Complete drug exposures along with associated details 
such as dose and route of administration are not always 
available, constraining the possible study designs or 
requiring a tradeoff between sensitivity and specificity 
in defining treatment. In our analysis, for example, we 
were only concerned with adjusting for dexamethasone 
treatment as it is commonly administered and has been 
shown as part of the RECOVERY trial to lower mortal-
ity in hospitalized patients receiving respiratory support 
[39]. However, a dedicated investigation into the effec-
tiveness of dexamethasone may involve more subset-
ting of data based on availability of dosage and route of 
administration. Alternative explanations for observed 
drug exposure patterns should also receive considera-
tion. The witnessed distribution of drug eras for remde-
sivir in our study may be consistent with some artifactual 
‘coarsening’ mechanism at play in how actual drug expo-
sures in each patient case may, depending on coding and 
CDM-mapping practice that vary by data partner, tend 
toward inclusion of ‘rounder’ numbers such as 1, 5, and 
10 days [40]. Additionally worth reiterating is the pos-
sibility that treatment with remdesivir was terminated 
early, and therefore had unexpected durations, due to 
drug reactions and side effects that outweighed benefits 
of treatment.

Looking more broadly, being limited to EHR data 
means no enrollment information demarcating a specific 
time period during which records are known to be com-
plete is available; there are no guarantees on patient-level 
completeness. Therefore, estimating EHR continuity, as 
we have outlined above, is a crucial part of mitigating 
the resulting bias. It cannot be assumed that the lack of 
a given baseline comorbidity or therapy is evidence of its 
absence, particularly for chronic conditions and medica-
tions, unless EHR continuity can be established. This is 
also true for COVID-19 vaccination, which is an impor-
tant exposure for COVID-19-related studies. There is 
no explicit indicator of non-vaccination, and the wide-
spread availability of vaccines can further contribute to 
data fragmentation. It does appear however that some 
institutions may synchronize vaccination records with 
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their state’s vaccine registry, which provides one strat-
egy for assessing the completeness of an institution’s 
vaccine records [41]. Given the significant potential for 
information bias due to EHR-discontinuity, some have 
proposed using predictive modeling to identify patients 
with high EHR-continuity [21]. Furthermore, carefully 
designed methodological frameworks are needed to 
handle selection bias (the sickest patients often have the 
most complete records) which can arise when enforc-
ing data completeness for the EHR data [42]. There are 
ongoing efforts within N3C to link to CMS claims which 
will address many of these concerns for at least a specific 
patient population. Additionally, data mining unstruc-
tured data such as clinical notes may provide more 
comprehensive information on baseline comorbidities, 
particularly for patients which lack a prior history with 
the admitting health system.

Suitable outcomes for evaluation are generally limited 
by the availability of data in EHRs and more specifically 
limited by both the OMOP data model and data part-
ner reporting. ICU admissions, for example, cannot be 
resolved from the visit-level information available, not-
withstanding the possibility that some sites repurposed 
non-ICUs to serve as ICUs during surges in COVID-19 
patients. Additionally, despite the popularity of compos-
ite outcomes, such as death or discharge to hospice, we 
find that most data partners do not provide discharge 
disposition. Perhaps most importantly with regards to 
outcomes is the lack of availability of mortality data out-
side the EHR, for the time being, which underestimates 
overall mortality and restricts investigations to in-hos-
pital mortality alone. Although the use of survival meth-
ods may not be the most appropriate choice for patients 
who are hospitalized with critical illness [43], they are 

still nonetheless quite widely used. For survival analysis, 
being limited to in-hospital mortality alone has impor-
tant implications. Patients who are discharged from the 
hospital are typically discharged due to recovery, or to 
a different care facility due to disease severity. In either 
case, the risk of death among discharged patients is not 
the same as those patients who remain hospitalized. Cen-
soring patients at discharge introduces a differential risk 
of death between censored and non-censored observa-
tions, violating the non-informative censoring assump-
tion necessary for common survival models such as Cox 
proportional hazards. This violation can be addressed by 
censoring all patients after a fixed time period, known 
as the “best-case” or “best-outcome” approach, which 
assumes discharged patients have survived until the end 
of the observation period [30]. Alternatively, one can treat 
discharge as a competing outcome and rely on the subdis-
tribution hazard function or other methods for compet-
ing-risk analysis [32]. The most direct remedy would be 
to link patient records through PPRL to ancillary sources 
of mortality data to capture deaths post-discharge. This 
may be particularly important in view of published data 
suggesting an increased risk of mortality for many months 
following hospitalization for COVID-19 [44]. A summary 
of the issues presented is shown in Table 7.

These pervasive issues have been noted across a num-
ber of multi-site EHR repositories [45, 46]. In Optum 
De-identified COVID-19 EHR, Chawla et  al. notes that 
missing data is MNAR due to the urgency of the pan-
demic and can affect measured outcomes [47]. Depend-
ence on diagnostic and procedural codes may result in 
underreporting of events, and mortality rates can also be 
underestimated. Another analysis using the COVID-19 
Research Database explains that only associations rather 

Table 7  Summary of challenges presented along with possible solutions

Challenge Possible solution(s)

Source-specific variability in data availability • Cluster data sources based on relevant study variables and eliminate those with insufficient 
data.
• Investigate possible temporal missingness patterns and evidence of MNAR data.
• Potentially leverage relevant techniques such as multiple imputation and inverse probability 
weighting to handle remaining missing data.

Unreconciled drug exposure intervals • Aggregate contiguous drug exposure intervals into single drug eras.
• Residual open-ended intervals may not allow for time-varying analysis and may only be suitable 
for analysis as point exposures.

Absence of baseline medical history • Perform a sensitivity analysis to understand the impact of EHR-continuity on the estimand.
• Consider incorporating prognostic factors proximal to the outcome into the model.

Limited availability of out-of-hospital mortality data • Consider a sensitivity analysis on censoring time for discharged patients.
• Employ competing risk analysis analysis with discharge and in-hospital mortality as competing 
risks.

Previous medical history carried forward in EHR data • Calculate the number of events recorded per day throughout the visit for an outcome of inter-
est.
• Determine if treatment preceded the outcome or if it is an artifact.



Page 18 of 21Sidky et al. BMC Medical Research Methodology           (2023) 23:46 

than causality can be determined using available medical 
record data as unmeasured confounders can mask true 
links between outcomes [48].

With the proper strategies and data quality considera-
tions, N3C is particularly well suited to investigate treat-
ment effectiveness in hospitalized patients. It contains 
rich and detailed clinical data such as laboratory results, 
vital signs, and other measurements. These observations 
can serve as proximal measures to account for differences 
in severity of illness across patients, enable patient phe-
notyping and confounding adjustment, and may be more 
important and relevant than many chronic comorbidities 
that may be more difficult to measure. Additionally, data 
in N3C are routinely updated with little to no time lag, 
which is critical when pandemic conditions are chang-
ing rapidly and new variants of the SARS-CoV-2 virus are 
emerging. With the appropriate treatment of data qual-
ity issues as outlined in this paper, in addition to robust 
study design, N3C has demonstrated its central impor-
tance in serving as a source of RWE for COVID-19.

Conclusions
The creation of the N3C Data Enclave and the centrali-
zation of EHRs from data partners across the country 
enables a wide range of RWE research aimed at better 
understanding treatments and health impacts of COVID-
19. As with all observational research, it is important that 
researchers are judicious in understanding the data they 
are analyzing and defining research questions that are 
both clinically important and feasible to address using 
the available data.

We share lessons learned in the context of using N3C 
to evaluate remdesivir use in hospitalized COVID-19 
patients. We found it was necessary to spend consider-
able time evaluating and curating the data, and select-
ing data partners with sufficient data quality in the 
elements required to address the specific question at 
hand. Given EHR-related data limitations, we needed to 
make assumptions and design decisions when operation-
alizing concepts of interest. We emphasize the impor-
tance of transparency in observational research and urge 
researchers to be explicit in how concepts are defined, 
and how various necessary assumptions may introduce 
bias. Lastly, we encourage researchers to conduct sensi-
tivity analyses to assess the robustness of the results to 
assumptions made in the study design process [49].

The N3C Data Enclave is a major contribution to pub-
lic health making possible a breadth of research address-
ing the COVID-19 pandemic. To maintain public trust in 
scientific research, we must be thoughtful in using this 
resource responsibly by asking questions falling within 
the scope of the data, and form conclusions that are sup-
ported by the analysis.
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