1,008 research outputs found

    Phase-reference VLBI Observations of the Compact Steep-Spectrum Source 3C 138

    Full text link
    We investigate a phase-reference VLBI observation that was conducted at 15.4 GHz by fast switching VLBA antennas between the compact steep-spectrum radio source 3C 138 and the quasar PKS 0528+134 which are about 4∘^\circ away on the sky. By comparing the phase-reference mapping with the conventional hybrid mapping, we demonstrate the feasibility of high precision astrometric measurements for sources separated by 4∘^\circ. VLBI phase-reference mapping preserves the relative phase information, and thus provides an accurate relative position between 3C 138 and PKS 0528+134 of Δα=−9m46s.531000±0s.000003\Delta\alpha=-9^m46^s.531000\pm0^s.000003 and Δδ=3∘6′26′′.90311±0′′.00007\Delta\delta=3^\circ6^\prime26^{\prime\prime}.90311\pm0^{\prime\prime}.00007 (J2000.0) in right ascension and declination, respectively. This gives an improved position of the nucleus (component A) of 3C 138 in J2000.0 to be RA=05h21m9s.88574805^h 21^m 9^s.885748 and Dec=16∘38′22′′.0526116^\circ 38' 22''.05261 under the assumption that the position of calibrator PKS 0528+134 is correct. We further made a hybrid map by performing several iterations of CLEAN and self-calibration on the phase-referenced data with the phase-reference map as an input model for the first phase self-calibration. Compared with the hybrid map from the limited visibility data directly obtained from fringe fitting 3C 138 data, this map has a similar dynamic range, but a higher angular resolution. Therefore, phase-reference technique is not only a means of phase connection, but also a means of increasing phase coherence time allowing self-calibration technique to be applied to much weaker sources.Comment: 9 pages plus 2 figures, accepted by PASJ (Vol.58 No.6

    A size of ~1 AU for the radio source Sgr A* at the centre of the Milky Way

    Get PDF
    Although it is widely accepted that most galaxies have supermassive black holes (SMBHs) at their centers^{1-3}, concrete proof has proved elusive. Sagittarius A* (Sgr A*)^4, an extremely compact radio source at the center of our Galaxy, is the best candidate for proof^{5-7}, because it is the closest. Previous Very Long Baseline Interferometry (VLBI) observations (at 7mm) have detected that Sgr A* is ~2 astronomical unit (AU) in size^8, but this is still larger than the "shadow" (a remarkably dim inner region encircled by a bright ring) arising from general relativistic effects near the event horizon^9. Moreover, the measured size is wavelength dependent^{10}. Here we report a radio image of Sgr A* at a wavelength of 3.5mm, demonstrating that its size is \~1 AU. When combined with the lower limit on its mass^{11}, the lower limit on the mass density is 6.5x10^{21} Msun pc^{-3}, which provides the most stringent evidence to date that Sgr A* is an SMBH. The power-law relationship between wavelength and intrinsic size (The size is proportional to wavelength^{1.09}), explicitly rules out explanations other than those emission models with stratified structure, which predict a smaller emitting region observed at a shorter radio wavelength.Comment: 18 pages, 4 figure

    Picosecond electric-field-induced threshold switching in phase-change materials

    Full text link
    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4_4In3_3Sb67_{67}Te26_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on sub-picosecond time-scales - faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.Comment: 6 pages manuscript with 3 figures and 8 pages supplementary materia

    Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions

    Full text link
    Elliptic flow (v2v_2) and hexadecupole flow (v4v_4) of light clusters have been studied in details for 25 MeV/nucleon 86^{86}Kr + 124^{124}Sn at large impact parameters by Quantum Molecular Dynamics model with different potential parameters. Four parameter sets which include soft or hard equation of state (EOS) with/without symmetry energy term are used. Both number-of-nucleon (AA) scaling of the elliptic flow versus transverse momentum (ptp_t) and the scaling of v4/A2v_4/A^{2} versus (pt/A)2(p_t/A)^2 have been demonstrated for the light clusters in all above calculation conditions. It was also found that the ratio of v4/v22v_4/{v_2}^2 keeps a constant of 1/2 which is independent of ptp_t for all the light fragments. By comparisons among different combinations of EOS and symmetry potential term, the results show that the above scaling behaviors are solid which do not depend the details of potential, while the strength of flows is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure

    Resolving the inner jet structure of 1924-292 with the EVENT HORIZON TELESCOPE

    Get PDF
    We present the first 1.3 mm (230 GHz) very long baseline interferometry model image of an AGN jet using closure phase techniques with a four-element array. The model image of the quasar 1924-292 was obtained with four telescopes at three observatories: the James Clerk Maxwell Telescope (JCMT) on Mauna Kea in Hawaii, the Arizona Radio Observatory's Submillimeter Telescope (SMT) in Arizona, and two telescopes of the Combined Array for Research in Millimeterwave Astronomy (CARMA) in California in April 2009. With the greatly improved resolution compared with previous observations and robust closure phase measurement, the inner jet structure of 1924-292 was spatially resolved. The inner jet extends to the northwest along a position angle of −53∘-53^\circ at a distance of 0.38\,mas from the tentatively identified core, in agreement with the inner jet structure inferred from lower frequencies, and making a position angle difference of ∼80∘\sim 80^{\circ} with respect to the cm-jet. The size of the compact core is 0.15\,pc with a brightness temperature of 1.2×10111.2\times10^{11}\,K. Compared with those measured at lower frequencies, the low brightness temperature may argue in favor of the decelerating jet model or particle-cascade models. The successful measurement of closure phase paves the way for imaging and time resolving Sgr A* and nearby AGN with the Event Horizon Telescope.Comment: 6 pages, 4 figures, accepted for publication in ApJ

    Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi2Se3

    Full text link
    Bi2Se3 is a topological insulator with metallic surface states residing in a large bulk bandgap. It is believed that Bi2Se3 gets additional n-type doping after exposure to atmosphere, thereby reducing the relative contribution of surface states in total conductivity. In this letter, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological surface states. Appropriate surface passivation or encapsulation may be required to probe topological surface states of Bi2Se3 by transport measurements

    Experimental demonstration of a free space cylindrical cloak without superluminal propagation

    Full text link
    We experimentally demonstrated an alternative approach of invisibility cloaking that can combine technical advantages of all current major cloaking strategies in a unified manner and thus can solve bottlenecks of individual strategies. A broadband cylindrical invisibility cloak in free space is designed based on scattering cancellation (the approach of previous plasmonic cloaking), and implemented with anisotropic metamaterials (a fundamental property of singular-transformation cloaks). Particularly, non-superluminal propagation of electromagnetic waves, a superior advantage of non-Euclidian-transformation cloaks constructed with complex branch cuts, is inherited in this design, and thus is the reason of its relatively broad bandwidth. This demonstration provides the possibility for future practical implementation of cloaking devices at large scales in free space.Comment: 16 pages, 3 figures, accepted by Physical Review Letter
    • …
    corecore