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ABSTRACT

We present the first 1.3 mm (230 GHz) very long baseline interferometry model
image of an AGN jet using closure phase techniques with a four-element array. The
model image of the quasar 1924-292 was obtained with four telescopes at three ob-
servatories: the James Clerk Maxwell Telescope (JCMT) on Mauna Kea in Hawaii,
the Arizona Radio Observatory’s Submillimeter Telescope (SMT) in Arizona, and
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two telescopes of the Combined Array for Research in Millimeterwave Astronomy
(CARMA) in California in April 2009. With the greatly improved resolution com-
pared with previous observations and robust closure phase measurement, the inner jet
structure of 1924-292 was spatially resolved. The inner jetextends to the northwest
along a position angle of−53◦ at a distance of 0.38 mas from the tentatively identified
core, in agreement with the inner jet structure inferred from lower frequencies, and
making a position angle difference of∼ 80◦ with respect to the cm-jet. The size of
the compact core is 0.15 pc with a brightness temperature of 1.2×1011 K. Compared
with those measured at lower frequencies, the low brightness temperature may argue
in favor of the decelerating jet model or particle-cascade models. The successful mea-
surement of closure phase paves the way for imaging and time resolving Sgr A* and
nearby AGN with the Event Horizon Telescope.

Subject headings: galaxies: active - galaxies: jets - quasars: individual (1924-292) -
radio continuum: general - techniques: high angular resolution - techniques: interfer-
ometric

1. Introduction

The quasar 1924-292 (PKS 1921-293, OV-236) is one of the brightest and most compact flat-
spectrum radio sources in the sky. It has been classified as anoptically violent variable (Wills &
Wills 1981; Pica et al. 1988) and highly polarized quasar (Worrall & Wilkes 1990). As a radio-loud
blazar, it shows strong variability from radio to X-ray. This source is also included in the Fermi-
LAT 1-year Point Source Catalog (Abdo et al. 2010). At its redshift of z=0.352 (Wills & Wills
1981), an angular resolution of 1 mas corresponds to 4.93 pc (H0 = 71kms−1Mpc−1, ΩM = 0.27 and
ΩΛ = 0.73).

1924-292 is completely unresolved with Very Large Array (VLA) observations made at 6 cm
and 20 cm (de Pater et al. 1985; Perley 1982). Very long baseline interferometry (VLBI) obser-
vations made at cm wavelengths show a typical core-jet structure with the jet extending about 10
mas to northeast along a position angle (P.A.) of approximately 25◦–30◦(e.g.,Kellermann et al.
1998; Preston et al. 1989; Shen et al. 1997; Tingay et al. 1998). With increased resolution, VLBI
observations at 7 and 3.5 mm and VLBI space observatory program observations showed that the
inner jet curves sharply and is oriented toward the northwest (extends up to about 1 mas) with a
time-varying position angle (Lee et al. 2008; Shen et al. 1999, 2002). Shen et al.(2002) reported
that superluminal motion (about 3 c) has been detected. The innermost (< 1 pc) region, however,
was characterized by two equally compact components whose relative positions were unchanged
over about 6.5 years covered by their observations. At cm wavelengths, this source also has one of
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the highest brightness temperatures of& 3×1012 K measured in the source rest frame, in excess
of the inverse Compton limit for synchrotron radiation (Linfield et al. 1989; Moellenbrock et al.
1996; Shen et al. 1999; Tingay et al. 1998).

VLBI observations at short millimeter wavelengths (λ ≤1.3 mm,ν ≥ 230 GHz) have tradi-
tionally been challenging due to the limited sensitivity ofthe instruments and atmospheric phase
fluctuations. With the application of new technical developments (such as phased-array proces-
sors, wide-bandwidth digital backends, and high-data-rate recorders) and the appearance of new
suitable antennas, recent observations have established the technical feasibility of VLBI at short
millimeter wavelengths and have opened a new window to directly study and image black holes
with the Event Horizon Telescope (EHT) (Doeleman et al. 2008; Fish et al. 2011).

Closure phase, which is the sum of the interferometric phasearound a triplet of antennas,
is largely immune to atmospheric and instrumental complex gain variations (Rogers et al. 1974;
Pearson & Readhead 1984). It is closely related to the asymmetry of the emission and thus is a
robust observable for understanding source structures with high resolution. In the low signal-to-
noise (SNR) regime, however, it has been inherently difficult to obtain closure phase with high-
frequency VLBI at 1.3 mm. With the deployment of new VLBI systems and enhancement of
software capabilities, closure phases have now been robustly measured by the EHT on the quasar
1924-292, allowing us to model the compact structure on submilliarcsecond scales.

2. OBSERVATIONS AND DATA REDUCTION

On 5–7 April 2009 (days 95–97), 1924-292 was observed as a calibration source during ob-
servations of the Galactic center at 1.3 mm with a four-station VLBI array consisting of the James
Clerk Maxwell Telescope (JCMT; hereafter J) on Mauna Kea in Hawaii, the Arizona Radio Ob-
servatory’s Submillimeter Telescope (SMT; hereafter S) inArizona, and two telescopes of the
Combined Array for Research in Millimeterwave Astronomy (CARMA; hereafter C&D, located
60 m apart) in California (Fish et al. 2011). The JCMT made use of the eSMA infrastructure, with
the Submillimeter Array providing the hydrogen maser standard and first local oscillator signal
and housing the digital backend and data recorders. Figure1 (left) shows the four elements of
the array. The observations of 1924-294 comprise five-10 minute scans each day with uv cover-
age shown in Figure1 (right), resulting in a synthesized beam size of∼ 0.26×0.06 mas with a
position angle of−20◦. Observations were performed in LCP in two 480-MHz bands centered at
229.089 and 229.601 GHz (low and high bands) with an aggregate data rate of 3.84 Gigabit/sec
(2-bit sampling) at each site. The data correlation was performed at MIT Haystack Observatory in
Westford, Massachusetts, on the Mark4 VLBI correlator.
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Fig. 1.— Left: Map showing the four elements of the array for the 1.3 mm VLBI observations on
1924-292. Right: Plot of the uv-coverage.

At short millimeter wavelengths, fluctuations in the atmospheric path length cause a loss of
coherence in the VLBI data. After data correlation, atmospheric coherence times were determined
from the variation in coherence with integration time. A search for a peak in SNR in delay and
delay rate space was performed for each scan, after segmenting the data at the coherence time
and incoherent averaging over the full scan length. The segmented data were then incoherently
averaged at the optimal values of delay and rate from the fringe search to reconstruct the visibility
amplitude, during which corrections were introduced to account for the noise bias. The segmenta-
tion time is short enough that the amplitude information waspreserved. We adopted a coherence
time ranging from 3 to 5 s (depending on the observing night).The coherence time is shorter than
the coherent integration time corresponding to a 5 % amplitude loss for all scans, and coherence
losses are limited to negligible levels. The segmented bispectrum (triple products of the complex
visibilities) was also formed, and averaged closure phaseswere determined as an average of the
bispectrum segments, with the SNR determined from the following equation:

SNR =
Σ

M
i=1ampicos(θci − θc)

√

ΣM
i=1amp2

i sin2(θci − θc)
, (1)

where ampi is the triple product of the amplitudes,θci is the closure phase for each segment, and
θc is the averaged closure phase. The analysis was performed within the Haystack Observatory
Postprocessing System (HOPS) package, based on the theory developed byRogers et al.(1995).

The visibilities were firsta priori calibrated, with a subsequent regularization described below.
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System temperatures are measured before each VLBI scan and applied to the data. Antenna gains
were directly determined from observations of planets at the JCMT and SMT. At the CARMA,
relative gains were first estimated using observations in interferometric array mode before each
VLBI scan, and the gains were then set to a common flux scale using planet observations at the
end of each night (Fish et al. 2011). A day-to-day systematic trend in CARMA gains due to planet
observations, which led to an apparent brightening of all VLBI sources, was then removed.

The calibrated data were internally reconciled following the “gain calibration” method de-
tailed in Fish et al.(2011). Briefly, this assumes that (1) the correlated flux density of the CD
baseline, which has projected baseline length of 17− 33kλ and an equivalent resolution of 8-15′′,
is equal to the CARMA measured total flux density of 10.25 Jy for 1924-292; (2) the low and
high band fluxes should be the same statistically; and (3) measured flux densities on SC and SD
baselines should be equal, while JC and JD flux densities are not strictly required to be equal due
to the lower SNR. The remaining residual errors are believedto be∼ 5% and therefore have been
added in quadrature to the random errors of the data. Figure2 shows the variations of the corre-
lated flux density with radial distance from the origin of theuv plane (left) and with time (right).
In Figure3, we show the measured closure phase on the SCD/JCD (left) andSJC/SJD triangles
(right). The average of closure phase uncertainties on the SJC/SJD triangle is about 2.6◦. The high
repeatability of the correlated flux over the three days and reliable measurement of nonzero closure
phases indicate a robust detection of a stable source structure.

3. Results

The calibrated amplitudes and closure phases were modeled with Gaussian functions to parametrize
the source structure. Least-squares fitting of Gaussian models to VLBI data and error estimation
are discussed, e.g., inPearson(1995). The variations evident in the correlated flux densities onthe
SC and SD baselines (Figure2) and the nonzero closure phases (Figure3) indicate that a multi-
component structure is required to fit the data.

Due to the limited uv coverage, we chose to reproduce the observed flux density by con-
sidering two classes of simple models. In the first class (models Ma and Mb), the flux densities
on VLBI scales were fitted with two compact Gaussian components, and the drop of correlated
flux density of∼ 4 Jy between the CD and SC/SD baselines (Figure2) is interpreted as due to
an extended component. In this case, a component with a size between the scales probed by the
SC/SD (a few hundred microarcseconds) and the CD (a few arcseconds) baselines is required to
account for this drop and was fixed during the fitting. However, the position of this component is
not constrained by our data because the measured closure phases on SCD/JCD triangles are essen-
tially zero (0.5◦±2.0◦). In model Ma, two circular Gaussians were introduced for the compact
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flux density, which gives a reducedχ2
ν
=2.0 for all the data (7 parameters, 253 degrees of freedom),

indicating that the source structure may be more complicated than assumed. Therefore, the second
compact component was replaced by an elliptical Gaussian inmodel Mb, with reducedχ2

ν
= 1.5.

In contrast, the second class of model consists of three circular Gaussian components (model Mc),
which fits both the VLBI scale and arcsecond scale (CD baseline) flux with three compact com-
ponents (reducedχ2

ν
= 1.2). With the caveat that the data should not be overinterpreted, we do not

attempt to introduce more parameters to obtain a reducedχ2
ν

even closer to unity. The fitted com-
ponent flux density, radial distance and position angle withrespect to the presumed core, major
axis (FWHM) of the Gaussian function, axis ratio, position angle of the major axis, and brightness
temperature Tb (in the source frame) for the three models are given in Table1. We report uncer-
tainties based on the size of the region around the best-fit point in parameter space corresponding
to 68.3 % probability. A comparison of model fits to the amplitudes and closure phases for the
three-day observations is also shown in Figure2 (right) and3.

Fig. 2.— Left: Correlated flux density as a function of uv distance. Since the source structure is
not circularly symmetric, the correlated flux density will change for a given uv distance as the earth
rotates. Right: Correlated flux density as a function of timewith comparison of the three models.

4. DISCUSSION

There is broad consistency among the three models we have considered: They all require
two compact components,∼ 20–30µas (Ma1/Mb1/Mc0) and∼ 50–80µas in size, separated by
∼370µas at a P.A. of−54◦. These two components are the most reliably measured features by our
data, and the accurately measured closure phases remove the180◦ of degeneracy in the jet position
angle.
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Table 1: Results of Model-Fitting of the compact flux in 1924-292.
Model χ2

ν
ID Flux Density Distance P.A. Major Ratio φ Tb

(Jy) (µas) (degree) (µas) (-) (degree) (109 K)
Ma 2.0 0 4.6±0.3 · · · · · · >400-600 1.0 · · · < 0.9

1 2.3±0.2 0 0 21±3 1.0 · · · 160
2 3.4±0.2 371±3 −55±1 48±2 1.0 · · · 46

Mb 1.5 0 3.6±0.5 · · · · · · >400-600 1.0 · · · < 0.7
1 2.5±0.2 0 0 25±3 1.0 · · · 120
2 4.2±0.3 363±4 −56±1 150±19 0.3±0.1 −21±2 20

Mc 1.2 0 3.6±0.3 0 0 31±2 1.0 · · · 120
1 2.0±0.2 163±12 −73±5 50±7 1.0 · · · 26
2 4.5±0.3 379±7 −53±1 58±3 1.0 · · · 42

Of the three models, model Mc gives the best fit based on theχ2-fitting results; however, we
cannot completely rule out the first class of models. From Figures2 (right) and3, it is obvious
that some extra data samples on the existing baselines wouldeasily discriminate between the three
models even with the present-day sensitivity. Nevertheless, with the most compact component
being the core and the sizes of the three components increasing with distance from the core, model
Mc is more consistent with the expectation of an expanding jet. Model C also accounts for all the
flux in specific components and therefore is preferred. We show its model image in Figure4. The
three-component jet model may be approximating a continuous expanding jet structure, perhaps
with nonuniform brightness. Sensitivity and uv coverage limitations currently prevent us from
being able to model such a structure, but future observations will be able to directly image the jet
structure.

The fraction of the core flux densityScore
Stotal

, which indicates the compactness of a source, is∼

20 % at 1.3 mm from our observations. The core, however, is very compact and strong (&2 Jy),
making it suitable as a fringe finder for 1.3 mm VLBI observations. It can be seen from Table1
and Figure4 that the inner jet structure determined by 1.3 mm VLBI agreeswell with the reported
inner jet orientation at lower frequencies (e.g.,Shen et al. 2002). The three-component model at
3.5 mm byLee et al.(2008) does not fit the jet structure seen at 1.3 mm, and the P.A. between their
two components away from the core is about 70◦. We note, however, that the 3.5 mm observations
were made at a different epoch, and the significance of these components is unclear given the
limited dynamic range of the 3.5 mm map.

The component (Ma2/Mb2/Mc2) may serve as a link to the extended cm-jet toward a P.A. of
∼ 30◦ and can be interpreted as the result of a local bend in the jet toward the observer (Figure4).
Interestingly, the innermost component of about 160µas (0.8 pc) from the assumed core in model
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Fig. 3.— Plot of closure phase as a function of time for the SCD/JCD triangles (left), and SJC/SJD
triangles (right) for the three-day observations. The predicted closure phases for the models are
also shown. Note that the expected closure phase for the trivial SCD/JCD triangles is zero.

Mc (component Mc1) extends to the northwest along a P.A. of−70◦. Its size lies well between the
sizes of component Mc0 and Mc2, consistent with the expectation of a fanning-out of the jet. With
this component, the innermost jet seems to bend more sharplywith respect to the cm emission
than previously known with VLBI at lower frequencies, indicating that the jet at these sub-pc
scales is extremely curved, reminiscent of a helical jet structure. Furthermore, if this component
is associated with the recent mm flare started in 20081, and assuming a time lag of 0.1 yr between
component ejection and onset of a mm-flare (Krichbaum et al. 2003), we obtain an estimate of the
jet speed of 0.2 mas/yr (4 c), slightly faster than, but stillconsistent with, the reported jet speed
of 3 c (Shen et al. 2002). The compact double within the inner 1 pc regions reported by Shen et
al. (2000, 2002) may be associated with either Mc0 and Mc1 or Mc0 and Mc2. However, cross
identification is difficult because of the long gap in time between these observations.

The radio core is very compact, and the measured angular sizeof 31µas translates into a
linear size of 0.15 pc, or 4.6×1017 cm. For this component, we obtained a source-frame brightness
temperature of 1.2×1011K, less than the inverse Compton limit (Kellermann & Pauliny-Toth 1969)
and the equipartition limit (Readhead 1994). Therefore, the measured core brightness temperature
alone does not readily imply relativistic beaming, although the reported superluminal motion is
suggestive of a beaming effect. Indeed, a very large Dopplerfactor (> 80) was reported in this
source (Fujisawa et al. 1999).

The core brightness temperature at 1.3 mm is well below thosemeasured at cm wavelengths

1http://sma1.sma.hawaii.edu/callist/callist.html?plot=1924-292
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Fig. 4.— Model image of 1924-292. Contours are drawn at 1, 2, 4, ..., 64 % of the peak brightness.
The two dashed curves indicate (schematically) how the inner jet is bent toward the cm jet.

(& 3×1012 K, Shen et al. 1999, and references therein). This is even true when we considerthose
derived brightness temperatures as lower limits because the core is unresolved at cm wavelengths.
On the one hand, this may suggest that relativistic beaming does not play a significant role in the
core region at 1.3 mm. One possibility is that the jet bends such that the Doppler beaming effect is
not maximized at the position of the core at 1.3 mm, but somewhere downstream of the jet. Another
possibility is that the jet undergoes parsec-scale acceleration, so that the jet is gradually beamed at
some distance from the central engine, and the inner jet traced at 1.3 mm is still accelerating. On
the other hand, our observations are at frequencies above the turnover frequency of the synchrotron
jet emission for this source. The self-similarity of the parsec-scale jet is believed to break down
in the regions probed at these high frequencies (Marscher 2009). Compared with previous low-
frequency observations, we probed “deeper” into the core region, where the brightness temperature
can be intrinsically lower. This supports the deceleratingjet model or particle-cascade models, as
discussed byMarscher(1995), which predict a lower brightness temperature for the inner jet close
to its origin.
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5. Summary and Future Prospects.

We have presented the first high-resolution VLBI observations of the quasar 1924-292 at
230 GHz. For the first time, an AGN jet is spatially resolved with 1.3 mm VLBI with robust
closure phase measurements. At pc scales, the inner jet direction is oriented toward the northwest
(P.A.=−53◦) with respect to the assumed core, consistent with previousresults. The innermost jet
appears to bend more sharply than previously known, and the jet curvature seen at 1.3 mm seems
to be more pronounced than at lower frequencies.

The compact core has a linear size of 0.15 pc and a brightness temperature of 1.2×1011K,
much lower than previous measured values at lower frequencies. This may indicate that the self-
similar jet breaks down at these probed scales and at frequencies at which the jet becomes optically
thin. VLBI observations at 1.3 mm are beginning to discriminate between inner jet models, and
a decrease of brightness temperature at higher frequencies(and therefore closer to the jet origin)
provides evidence in support of the decelerating jet model or particle-cascade models.

Further improvement of the array performance, e.g., by adding suitable VLBI sites and in-
creasing bandwidth recording rate and station collecting area via phased array techniques, will
allow the EHT to directly image the vicinity of super massiveblack holes at the Galactic center
and nearby galactic nuclei with a spatial resolution of a fewSchwarzschild radii in the foresee-
able future. The robust measurement of closure phase for 1924-292 opens the way for detecting
and constraining flare structures on Event-horizon scales for the Galactic center (Doeleman et al.
2009).

We thank the referee for useful comments and suggestions. High-frequency VLBI work at
MIT Haystack Observatory is supported by grants from the National Science Foundation (NSF).
The Arizona Radio Observatory (ARO) is partially supportedthrough the NSF University Radio
Observatories (URO) program under grant no. AST 1140030. The Submillimeter Array is a joint
project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute
of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia
Sinica. Funding for ongoing CARMA development and operations is supported by the NSF and
the CARMA partner universities.
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