6,905 research outputs found

    Monoid automata for displacement context-free languages

    Full text link
    In 2007 Kambites presented an algebraic interpretation of Chomsky-Schutzenberger theorem for context-free languages. We give an interpretation of the corresponding theorem for the class of displacement context-free languages which are equivalent to well-nested multiple context-free languages. We also obtain a characterization of k-displacement context-free languages in terms of monoid automata and show how such automata can be simulated on two stacks. We introduce the simultaneous two-stack automata and compare different variants of its definition. All the definitions considered are shown to be equivalent basing on the geometric interpretation of memory operations of these automata.Comment: Revised version for ESSLLI Student Session 2013 selected paper

    Magnetic digital flop of ferroelectric domain with fixed spin chirality in a triangular lattice helimagnet

    Full text link
    Ferroelectric properties in magnetic fields of varying magnitude and direction have been investigated for a triangular-lattice helimagnet CuFe1-xGaxO2 (x=0.035). The magnetoelectric phase diagrams were deduced for magnetic fields along [001], [110], and [1-10] direction, and the in-plane magnetic field was found to induce the rearrangement of six possible multiferroic domains. Upon every 60-degree rotation of in-plane magnetic field around the c-axis, unique 120-degree flop of electric polarization occurs as a result of the switch of helical magnetic q-vector. The chirality of spin helix is always conserved upon the q-flop. The possible origin is discussed in the light of the stable structure of multiferroic domain wall.Comment: 5 pages, 4 figures. Accepted in Phys. Rev. Let

    Nuclear Matter on a Lattice

    Get PDF
    We investigate nuclear matter on a cubic lattice. An exact thermal formalism is applied to nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin- and isospin-exchange interactions. We describe the nuclear matter Monte Carlo methods which contain elements from shell model Monte Carlo methods and from numerical simulations of the Hubbard model. We show that energy and basic saturation properties of nuclear matter can be reproduced. Evidence of a first-order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. We compare symmetry energy and first sound velocities with literature and find reasonable agreement.Comment: 23 pages, 8 figures (some in color), to be submitted to Phys. Rev.

    Dispersive photoluminescence decay by geminate recombination in amorphous semiconductors

    Full text link
    The photoluminescence decay in amorphous semiconductors is described by power law t−deltat^{-delta} at long times. The power-law decay of photoluminescence at long times is commonly observed but recent experiments have revealed that the exponent, deltasim1.2−1.3delta sim 1.2-1.3, is smaller than the value 1.5 predicted from a geminate recombination model assuming normal diffusion. Transient currents observed in the time-of-flight experiments are highly dispersive characterized by the disorder parameter alphaalpha smaller than 1. Geminate recombination rate should be influenced by the dispersive transport of charge carriers. In this paper we derive the simple relation, delta=1+alpha/2delta = 1+ alpha/2 . Not only the exponent but also the amplitude of the decay calculated in this study is consistent with measured photoluminescence in a-Si:H.Comment: 18pages. Submitted for the publication in Phys. Rev.

    Quantum annealing with antiferromagnetic fluctuations

    Full text link
    We introduce antiferromagnetic quantum fluctuations into quantum annealing in addition to the conventional transverse-field term. We apply this method to the infinite-range ferromagnetic p-spin model, for which the conventional quantum annealing has been shown to have difficulties to find the ground state efficiently due to a first-order transition. We study the phase diagram of this system both analytically and numerically. Using the static approximation, we find that there exists a quantum path to reach the final ground state from the trivial initial state that avoids first-order transitions for intermediate values of p. We also study numerically the energy gap between the ground state and the first excited state and find evidence for intermediate values of p that the time complexity scales polynomially with the system size at a second-order transition point along the quantum path that avoids first-order transitions. These results suggest that quantum annealing would be able to solve this problem with intermediate values of p efficiently in contrast to the case with only simple transverse-field fluctuations.Comment: 19 pages, 11 figures; Added references; To be published in Physical Review

    Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2

    Full text link
    Magnetic and dielectric properties with varying magnitude and direction of magnetic field H have been investigated for a triangular lattice helimagnet MnI2. The in-plane electric polarization P emerges in the proper screw magnetic ground state below 3.5 K, showing the rearrangement of six possible multiferroic domains as controlled by the in-plane H. With every 60-degree rotation of H around the [001]-axis, discontinuous 120-degree flop of P-vector is observed as a result of the flop of magnetic modulation vector q. With increasing the in-plane H above 3 T, however, the stable q-direction changes from q|| to q||, leading to a change of P-flop patterns under rotating H. At the critical field region (~3 T), due to the phase competition and resultant enhanced q-flexibility, P-vector smoothly rotates clockwise twice while H-vector rotates counter-clockwise once.Comment: 4 pages, 3 figures. Accepted in Physical Review Letter

    An automata characterisation for multiple context-free languages

    Full text link
    We introduce tree stack automata as a new class of automata with storage and identify a restricted form of tree stack automata that recognises exactly the multiple context-free languages.Comment: This is an extended version of a paper with the same title accepted at the 20th International Conference on Developments in Language Theory (DLT 2016

    Two- and Three-Pion Interferometry for a Nonchaotic Source in Relativistic Nuclear Collisions

    Get PDF
    Two- and three-pion correlation functions are investigated for a source that is not fully chaotic. Various models are examined to describe the source. The chaoticity and weight factor are evaluated in each model as measures of the strength of correlations and compared to experimental results. A new measure of three-pion correlation is also suggested.Comment: 19 pages, 6 figure
    • 

    corecore