In 2007 Kambites presented an algebraic interpretation of
Chomsky-Schutzenberger theorem for context-free languages. We give an
interpretation of the corresponding theorem for the class of displacement
context-free languages which are equivalent to well-nested multiple
context-free languages. We also obtain a characterization of k-displacement
context-free languages in terms of monoid automata and show how such automata
can be simulated on two stacks. We introduce the simultaneous two-stack
automata and compare different variants of its definition. All the definitions
considered are shown to be equivalent basing on the geometric interpretation of
memory operations of these automata.Comment: Revised version for ESSLLI Student Session 2013 selected paper