4,984 research outputs found

    Disorder-driven splitting of the conductance peak at the Dirac point in graphene

    Full text link
    The electronic properties of a bricklayer model, which shares the same topology as the hexagonal lattice of graphene, are investigated numerically. We study the influence of random magnetic-field disorder in addition to a strong perpendicular magnetic field. We found a disorder-driven splitting of the longitudinal conductance peak within the narrow lowest Landau band near the Dirac point. The energy splitting follows a relation which is proportional to the square root of the magnetic field and linear in the disorder strength. We calculate the scale invariant peaks of the two-terminal conductance and obtain the critical exponents as well as the multifractal properties of the chiral and quantum Hall states. We found approximate values ν≈2.5\nu\approx 2.5 for the quantum Hall states, but ν=0.33±0.1\nu=0.33\pm 0.1 for the divergence of the correlation length of the chiral state at E=0 in the presence of a strong magnetic field. Within the central n=0n=0 Landau band, the multifractal properties of both the chiral and the split quantum Hall states are the same, showing a parabolic f[α(s)]f[\alpha(s)] distribution with α(0)=2.27±0.02\alpha(0)=2.27\pm 0.02. In the absence of the constant magnetic field, the chiral critical state is determined by α(0)=2.14±0.02\alpha(0)=2.14\pm 0.02

    Levitation of Current Carrying States in the Lattice Model for the Integer Quantum Hall Effect

    Full text link
    The disorder driven quantum Hall to insulator transition is investigated for a two-dimensional lattice model. The Hall conductivity and the localization length are calculated numerically near the transition. For uncorrelated and weakly correlated disorder potentials the current carrying states are annihilated by the negative Chern states originating from the band center. In the presence of correlated disorder potentials with correlation length larger than approximately half the lattice constant the floating up of the critical states in energy without merging is observed. This behavior is similar to the levitation scenario proposed for the continuum model.Comment: 4 pages incl. 4 eps-figures. Published versio

    Quantum-Hall to insulator transition

    Full text link
    The crossover from the quantum Hall regime to the Hall-insulator is investigated by varying the strength of the diagonal disorder in a 2d tight-binding model. The Hall and longitudinal conductivities and the behavior of the critical states are calculated numerically. We find that with increasing disorder the current carrying states close to the band center disappear first. Simultaneously, the quantized Hall conductivity drops monotonically to zero also from higher quantized values.Comment: 5 pages LaTeX2e, 5 ps-figures included. Proceedings SemiMag13, Nijmegen 1998; to appear in Physica

    Floating of critical states and the QH to insulator transition

    Full text link
    The transition from the quantum Hall state to the insulator is considered for non-interacting electrons in a two-dimensional disordered lattice model with perpendicular magnetic field. Using correlated random disorder potentials the floating up of the critical states can be observed in a similar way as in the continuum model. Thus, the peculiar behaviour of the lattice models reported previously originates in the special choice of uncorrelated random disorder potentials.Comment: 4 pages incl. 4 eps-figures. Proceedings of SemiMag2000, Matsue, Japan. To be published in Physica

    A New Weighing Apparatus.

    Get PDF
    n/

    Non-LTE treatment of molecules in the photospheres of cool stars

    Get PDF
    We present a technique to treat systems with very many levels, like molecules, in non-LTE. This method is based on a superlevel formalism coupled with rate operator splitting. Superlevels consist of many individual levels that are assumed to be in LTE relative to each other. The usage of superlevels reduces the dimensionality of the rate equations dramatically and, thereby, makes the problem computationally more easily treatable. Our superlevel formalism retains maximum accuracy by using direct opacity sampling (dOS) when calculating the radiative transitions and the opacities. We developed this method in order to treat molecules in cool dwarf model calculations in non-LTE. Cool dwarfs have low electron densities and a radiation field that is far from a black body radiation field, both properties may invalidate the conditions for the common LTE approximation. Therefore, the most important opacity sources, the molecules, need to be treated in non-LTE. As a case study we applied our method to carbon monoxide. We find that our method gives accurate results since the conditions for the superlevel method are very well met for molecules. Due to very high collisional cross sections with hydrogen, and the high densities of H_2 the population of CO itself shows no significant deviation from LTE.Comment: AASTeX v50, 35 pages including 12 figures, accepted by Ap
    • …
    corecore