47 research outputs found

    Dose–responses from multi-model inference for the non-cancer disease mortality of atomic bomb survivors

    Get PDF
    The non-cancer mortality data for cerebrovascular disease (CVD) and cardiovascular diseases from Report 13 on the atomic bomb survivors published by the Radiation Effects Research Foundation were analysed to investigate the dose–response for the influence of radiation on these detrimental health effects. Various parametric and categorical models (such as linear-no-threshold (LNT) and a number of threshold and step models) were analysed with a statistical selection protocol that rated the model description of the data. Instead of applying the usual approach of identifying one preferred model for each data set, a set of plausible models was applied, and a sub-set of non-nested models was identified that all fitted the data about equally well. Subsequently, this sub-set of non-nested models was used to perform multi-model inference (MMI), an innovative method of mathematically combining different models to allow risk estimates to be based on several plausible dose–response models rather than just relying on a single model of choice. This procedure thereby produces more reliable risk estimates based on a more comprehensive appraisal of model uncertainties. For CVD, MMI yielded a weak dose–response (with a risk estimate of about one-third of the LNT model) below a step at 0.6 Gy and a stronger dose–response at higher doses. The calculated risk estimates are consistent with zero risk below this threshold-dose. For mortalities related to cardiovascular diseases, an LNT-type dose–response was found with risk estimates consistent with zero risk below 2.2 Gy based on 90% confidence intervals. The MMI approach described here resolves a dilemma in practical radiation protection when one is forced to select between models with profoundly different dose–responses for risk estimates

    A model for the induction of chromosome aberrations through direct and bystander mechanisms

    Get PDF
    A state vector model (SVM) for chromosome aberrations and neoplastic transformation has been adapted to describe detrimental bystander effects. The model describes initiation (formation of translocations) and promotion (clonal expansion and loss of contact inhibition of initiated cells). Additional terms either in the initiation model or in the rate of clonal expansion of initiated cells, describe detrimental bystander effects for chromosome aberrations as reported in the scientific literature. In the present study, the SVM with bystander effects is tested on a suitable dataset. In addition to the simulation of non-linear effects, a classical dataset for neoplastic transformation in C3H 10T1/2 cells after alpha particle irradiation is used to show that the model without bystander features can also describe LNT-like dose responses. A published model for bystander induced neoplastic transformation was adapted for chromosome aberration induction and used to compare the results obtained with the different models

    Detrimental and Protective Bystander Effects: A Model Approach

    Get PDF
    This work integrates two important cellular responses to low doses, detrimental bystander effects and apoptosis-mediated protective bystander effects, into a multistage model for chromosome aberrations and in vitro neoplastic transformation: the State-Vector Model. The new models were tested on representative data sets that show supralinear or U-shaped dose responses. The original model without the new low-dose features was also tested for consistency with LNT-shaped dose responses. Reductions of in vitro neoplastic transformation frequencies below the spontaneous level have been reported after exposure of cells to low doses of low-LET radiation. In the current study, this protective effect is explained with by-stander-induced apoptosis. An important data set that shows a low-dose detrimental bystander effect for chromosome aberrations was successfully fitted by additional terms within the cell initiation stage. It was found that this approach is equivalent to bystander-induced clonal expansion of initiated cells. This study is an important step toward a comprehensive model that contains all essential biological mechanisms that can influence dose–response curves at low doses

    Systems biological and mechanistic modelling of radiation-induced cancer

    Get PDF
    This paper summarises the five presentations at the First International Workshop on Systems Radiation Biology that were concerned with mechanistic models for carcinogenesis. The mathematical description of various hypotheses about the carcinogenic process, and its comparison with available data is an example of systems biology. It promises better understanding of effects at the whole body level based on properties of cells and signalling mechanisms between them. Of these five presentations, three dealt with multistage carcinogenesis within the framework of stochastic multistage clonal expansion models, another presented a deterministic multistage model incorporating chromosomal aberrations and neoplastic transformation, and the last presented a model of DNA double-strand break repair pathways for second breast cancers following radiation therapy

    Evaluating the Number of Stages in Development of Squamous Cell and Adenocarcinomas across Cancer Sites Using Human Population-Based Cancer Modeling

    Get PDF
    BACKGROUND: Adenocarcinomas (ACs) and squamous cell carcinomas (SCCs) differ by clinical and molecular characteristics. We evaluated the characteristics of carcinogenesis by modeling the age patterns of incidence rates of ACs and SCCs of various organs to test whether these characteristics differed between cancer subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Histotype-specific incidence rates of 14 ACs and 12 SCCs from the SEER Registry (1973-2003) were analyzed by fitting several biologically motivated models to observed age patterns. A frailty model with the Weibull baseline was applied to each age pattern to provide the best fit for the majority of cancers. For each cancer, model parameters describing the underlying mechanisms of carcinogenesis including the number of stages occurring during an individual's life and leading to cancer (m-stages) were estimated. For sensitivity analysis, the age-period-cohort model was incorporated into the carcinogenesis model to test the stability of the estimates. For the majority of studied cancers, the numbers of m-stages were similar within each group (i.e., AC and SCC). When cancers of the same organs were compared (i.e., lung, esophagus, and cervix uteri), the number of m-stages were more strongly associated with the AC/SCC subtype than with the organ: 9.79±0.09, 9.93±0.19 and 8.80±0.10 for lung, esophagus, and cervical ACs, compared to 11.41±0.10, 12.86±0.34 and 12.01±0.51 for SCCs of the respective organs (p<0.05 between subtypes). Most SCCs had more than ten m-stages while ACs had fewer than ten m-stages. The sensitivity analyses of the model parameters demonstrated the stability of the obtained estimates. CONCLUSIONS/SIGNIFICANCE: A model containing parameters capable of representing the number of stages of cancer development occurring during individual's life was applied to the large population data on incidence of ACs and SCCs. The model revealed that the number of m-stages differed by cancer subtype being more strongly associated with ACs/SCCs histotype than with organ/site

    Analysis of apoptosis methods recently used in Cancer Research and Cell Death & Disease publications

    Get PDF

    Estimating risk of circulatory disease from exposure to low-level ionizing radiation.

    Get PDF

    Cardiovascular disease mortality of a-bomb survivors and the healthy survivor selection effect.

    No full text
    The latest A-bomb survivor data for cardiovascular diseases are analysed to investigate whether in the first years after the bombings the baseline rates of proximal survivors were markedly different compared with those of the distal survivors. This phenomenon relates to a healthy survivor selection effect. This question is important for the decision whether to include or exclude the early years of follow-up when analysing the biological effects from acute low and high dose exposures following the nuclear weapons explosions in Hiroshima and Nagasaki. The present study shows that for cerebrovascular diseases and heart diseases the baseline rates are not significantly different in the first two decades of follow-up. Thus, for these two detrimental health outcomes, there is no need to exclude distal survivors and the first decades of follow-up time when investigating the shapes of the related dose-responses
    corecore