9,144 research outputs found

    Nonlinear Breathing-like Localized Modes in C60 Nanocrystals

    Get PDF
    We study the dynamics of nanocrystals composed of C60 fullerene molecules. We demonstrate that such structures can support long-lived strongly localized nonlinear oscillatory modes, which resemble discrete breathers in simple lattices. We reveal that at room temperatures the lifetime of such nonlinear localized modes may exceed tens of picoseconds; this suggests that C60 nanoclusters should demonstrate anomalously slow thermal relaxation when the temperature gradient decays in accord to a power law, thus violating the Cattaneo-Vernotte law of thermal conductivity.Comment: 6 pages, 6 figure

    Statistics of conductance and shot-noise power for chaotic cavities

    Get PDF
    We report on an analytical study of the statistics of conductance, gg, and shot-noise power, pp, for a chaotic cavity with arbitrary numbers N1,2N_{1,2} of channels in two leads and symmetry parameter β=1,2,4\beta = 1,2,4. With the theory of Selberg's integral the first four cumulants of gg and first two cumulants of pp are calculated explicitly. We give analytical expressions for the conductance and shot-noise distributions and determine their exact asymptotics near the edges up to linear order in distances from the edges. For 0<g<10<g<1 a power law for the conductance distribution is exact. All results are also consistent with numerical simulations.Comment: 7 pages, 3 figures. Proc. of the 3rd Workshop on Quantum Chaos and Localisation Phenomena, Warsaw, Poland, May 25-27, 200

    AN EXPERIMENTAL INVESTIGATION IN AN ATMOSPHERE ENTRY SIMULATOR OF NYLON AS AN ABLATIVE MATERIAL FOR BALLISTIC MISSILES

    Get PDF
    Investigation in atmosphere entry simulator of nylon as ablative material for ballistic missile

    Correlation functions of impedance and scattering matrix elements in chaotic absorbing cavities

    Get PDF
    Wave scattering in chaotic systems with a uniform energy loss (absorption) is considered. Within the random matrix approach we calculate exactly the energy correlation functions of different matrix elements of impedance or scattering matrices for systems with preserved or broken time-reversal symmetry. The obtained results are valid at any number of arbitrary open scattering channels and arbitrary absorption. Elastic enhancement factors (defined through the ratio of the corresponding variance in reflection to that in transmission) are also discussed.Comment: 10 pages, 2 figures (misprints corrected and references updated in ver.2); to appear in Acta Phys. Pol. A (Proceedings of the 2nd Workshop on Quantum Chaos and Localization Phenomena, May 19-22, 2005, Warsaw

    Properties of short-range and long-range correlation energy density functionals from electron-electron coalescence

    Full text link
    The combination of density functional theory with other approaches to the many-electron problem through the separation of the electron-electron interaction into a short-range and a long-range contribution is a promising method, which is raising more and more interest in recent years. In this work some properties of the corresponding correlation energy functionals are derived by studying the electron-electron coalescence condition for a modified (long-range-only) interaction. A general relation for the on-top (zero electron-electron distance) pair density is derived, and its usefulness is discussed with some examples. For the special case of the uniform electron gas, a simple parameterization of the on-top pair density for a long-range only interaction is presented and supported by calculations within the ``extended Overhauser model''. The results of this work can be used to build self-interaction corrected short-range correlation energy functionals.Comment: revised version, to appear in Phys. Rev.

    Van der Waals forces in density functional theory: perturbational long-range electron interaction corrections

    Full text link
    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a "range-separated hybrid" functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well-adapted to describe van der Waals complexes, like rare gas dimers.Comment: 8 pages, 1 figure, submitted to Phys. Rev.
    corecore